Delafossite CuFeO_(2) is a promising photocathode material for cost-efficiently photoelectrochemical(PEC)water splitting,but the unfavorable conductivity and fast recombination dynamics of photogenerated carriers limi...Delafossite CuFeO_(2) is a promising photocathode material for cost-efficiently photoelectrochemical(PEC)water splitting,but the unfavorable conductivity and fast recombination dynamics of photogenerated carriers limit its PEC activity for water reduction.Here,we developed a heterostructure photocathode consisting of the Cu-doped NiO(Cu:NiO)hole selective layer(HSL)and Ni-doped CuFeO_(2)(Ni:CuFeO_(2))active layer by simply annealing a homogeneous Cu-Fe oxalate layer grown on the Ni film deposited on the fluorine doped tin oxide(FTO)substrate.The obtained heterostructure of Cu:NiO/Ni:CuFeO_(2) with enhanced charge carrier transportability and high-quality interface greatly promotes the separation of photogenerated carriers.Accordingly,the Cu:NiO/Ni:CuFeO_(2) photocathode exhibits a high photocurrent density of~0.9 mA·cm^(-2 )at 0.2 V(vs.reversible hydrogen electrode,RHE),outperforming most of the reported bare CuFeO_(2) photocathodes in the literature.And the photocurrent density can be further improved to 1.2 mA·cm^(-2) after decorating NiSx cocatalyst.展开更多
Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The tol...Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The toluene adsorption capacities of the regeneration AC(RAC)samples can be significantly improved by adopting the heteroatomic modification strategy.RAC-P and RAC-S have the same specific surface area(1156 m^(2)/g)and similar porous structures.However,they have different toluene adsorption capacities,with 316.22 mg/g for RAC-P and 460.12 mg/g for RAC-S,which are 1.6 and 2.4 times greater than that for RAC.The X-ray photoelectron spectroscopy measurements showed that the increase in the amount ofπ–π^(2)chemical bond over the AC surface results in the improvement of the toluene adsorption performance.The density functional theory results showed that the S-containing functional groups loaded near the defect sites of RAC-S promote toluene adsorption.Moreover,reusability tests showed that RAC-S still retains 86%of its adsorption activity after four consecutive adsorption–desorption experiments.This indicates that the heteroatomic modification method affords excellent toluene adsorption performance and recycling practicability,which not only is beneficial for achieving the rational utilization of solid waste resources but also provides a practical method for the efficient elimination of volatile organic compounds.展开更多
Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin...Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin,NE China.Focusing on 30 core samples obtained from the first shale oil parameter well,named SYY3 in the study area,we systematically analyzed the composition and stratigraphic distribution of the K_(2)qn~1 heteroatomic compounds using electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry(ESI FT-ICR MS),to assess their geological relevance to shale oil.The findings indicate that in the negative ion mode,the heteroatomic compounds predominantly consist of N_(1),N_(1)O_(1)-N_(1)O_(8),O_(1)-O_(8),O_(1)S_(1)-O_(6)S_(1);contrastingly,in the positive ion mode,they are primarily composed of N_(1)-N_(2),N_(1)O_(1)-N_(1)O_(4),N_(2)O_(1),O_(1)-O_(4),O_(1)S_(1)-O_(2)S_(1).Heteroatomic compound distributions vary significantly with depth in the negative ion mode,with minor variations in the positive ion mode.These distributions are categorized into three types based on the negative ion ratio((N_(1)+N_(1)O_(x))/O_(x)):TypeⅠ(>1.5),TypeⅡ(0.8-1.5),and TypeⅢ(<0.8);typesⅠandⅡgenerally exhibit a broader range of carbon numbers compared to TypeⅢ.The distribution of double bond equivalent(DBE)values across various sample types exhibits minimal variance,whereas that of carbon numbers shows substantial differences.Variations in heteroatomic compound compositions among the samples might have resulted from vertical sedimentary heterogeneity and differing biotic contributions.TypeⅢsamples show a decrease in total organic carbon(TOC)and free oil content(S_(1))compared to typesⅠandⅡ,but an increased oil saturation index(OSI),indicating a lower content of free oil but a higher proportion of movable oil.The reduced content of N-containing compounds implies lower paleolake productivity during deposition,leading to a reduction in TOC and S_(1).A lower TOC can enhance oil movability due to reduced oil adsorption,and the decreased presence of polar nitrogenous macromolecules with fewer highC-number heteroatomic compounds further promote shale oil movability.Additionally,the negative ion ratios of N1/N1O1and O2/O1 exhibit positive and negative correlations with the values of TOC,S_(1),and extractable organic matter(EOM),respectively,indicating that the salinity and redox conditions of the depositional water body are the primary controlling factors for both organic matter enrichment and shale oil accumulation.展开更多
Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or exce...Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts.展开更多
Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fati...Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fatigue and lattice oxygen loss.In this work,an epitaxial surface rock-salt nanolayer is successfully developed on the LiNi_(0.9)Co_(0.1)O_(2)sub-surface via heteroatom anchoring utilizing high-valence element molybdenum modification.This in-situ formed conformal buffer phase with a thickness of 1.2 nm effectively suppresses the continuous interphase side-reactions,and thus maintains the excellent structure integrity at high voltage.Furthermore,theoretical calculations indicate that the lattice oxygen reversibility in the anion framework of the optimized sample is obviously enhanced due to the higher content of O 2p states near the Fermi level than that of the pristine one.Meanwhile,the stronger Mo-O bond further reduces cell volume alteration,which improves the bulk structure stability of modified materials.Besides,the detailed charge compensation mechanism suggests that the average oxidation state of Ni is reduced,which induces more active Li+participating in the redox reactions,boosting the cell energy density.As a result,the uniquely designed cathode materials exhibit an extraordinary discharge capacity of 245.4 mAh g^(-1)at 0.1 C,remarkable rate performance of 169.3 mAh g^(-1)at 10 C at 4.5 V,and a high capacity retention of 70.5% after 1000 cycles in full cells at a high cut-off voltage of 4.4 V.This strategy provides an valuable insight into constructing distinctive heterostructure on highperformance Ni-rich layered cathodes for LIBs.展开更多
Although Fe-Ni combination performs well in transition metal-based oxygen evolution reaction(OER)electrocatalysts,there are lack of clear and general regulations mechanism to fully play the synergistic catalytic effec...Although Fe-Ni combination performs well in transition metal-based oxygen evolution reaction(OER)electrocatalysts,there are lack of clear and general regulations mechanism to fully play the synergistic catalytic effect.Here,we made the utmost of the interaction of Fe–Ni heteroatomic pair to obtain a highly active Fe-Ni(oxy)hydroxide catalytic layer on iron foam(IF)and nickel foam(NF)by in-situ electrochemical deposition and rapid surface reconstruction,which only required 327 and 351 mV overpotential to provide a large current of 1,000 mA·cm^(−2),respectively.The results confirm that the moderate Ni-rich heteroatomic bonding(Ni–O–Fe–O–Ni)formed by adjusting the Ni/Fe ratio on the catalyst surface is important to offer predominant OER performance.Fe is a key component that enhances OER activity of Ni(O)OH,but Fe-rich structural surface formed by Fe–O–Ni–O–Fe bonding is not ideal.Finally,the remarkable oxygen evolution performance of the prepared Ni2Fe(O)OH/IF and FeNi2(O)OH/NF can be chalked up to the optimized electronic structure of Fe–Ni heteroatomic bonding,the efficient gas spillover,the fast electron transport,and nanosheet clusters morphology.In summary,our work suggests a comprehensive regulation mechanism for the construction of efficient Fe-Ni(oxy)hydroxide catalytic layer on inexpensive,stable,and self-supporting metallic material surface.展开更多
The development of metal-free carbon catalysts has garnered significant attention as a promising approach to address the challenges of sustainable catalysis,particularly in the replacement of toxic and environmentally...The development of metal-free carbon catalysts has garnered significant attention as a promising approach to address the challenges of sustainable catalysis,particularly in the replacement of toxic and environmentally hazardous mercury-based systems for the coal-based PVC industry.Within a decade of development,the catalytic performance of carbon catalysts has been improved greatly and even shows superiorities over metal catalysts in some cases,which have demonstrated great potential as sustainable alternatives to mercury catalysts.This review provides a comprehensive summary of the recent advancements in carbon catalysts for acetylene hydrochlorination.It encompasses a wide range of aspects,including the identification of active sites from heteroatom doping to intrinsic carbon defects,the various synthetic strategies employed,the reaction and deactivation mechanisms of carbon catalysts,and the current insights into the key challenges that are encountered on the journey from laboratory research to scalable commercialization within the field of carbon catalysts.The review offers foundational insights and practical guidelines for designing green carbon catalysts systems,not only for acetylene hydrochlorination but also for other heterogeneous catalytic reactions.展开更多
Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incor...Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incorporating heteroatom strategy via one-step hydrothermal approach to adjust more than one factor of Mn-doped NiFe(oxy)hydroxide(Mn-NiFeOOH/LDH)heterojunction.Mn doping regulates heterojunction morphology(reducing nanoparticles and becoming thinner and denser nanosheets),Ni/Fe ratio and valence states(Ni^(2+),Ni^(3+),and Ni^(3+Δ))of Ni ions.The former could effectively increase surface active sites,and the latter two reduce the content of Fe in the Mnx-NiFeOOH/LDH heterojunction,en-abling more Ni^(2+)convert to Ni^(3+/3+Δ)that have higher intrinsic OER activity.As a result,the first-rank Mn-NiFeOOH/LDH with ultra-low overpotential of 185 mV@20 mA cm^(-2) and 296 mV@500 mA cm^(-2),and the improved OER performance are outdo to those of commercial RuO_(2) catalyst for OER.Moreover,the Mn-NiFeOOH/LDH affords the earliest initial potential(1.392 V vs.RHE),corresponds to a recorded low overpotential(162 mV).Based on the density functional theory(DFT),Mn dopants can alter intermedi-ate adsorption energy and effectively decrease∗OOH’s energy barrier.This research exhibits a feasible strategy to design low cost electrocatalysts and provide new possibilities for future industrialization.展开更多
Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost,high safety,and environmental friendliness.However,their progress has been hampered by low energy...Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost,high safety,and environmental friendliness.However,their progress has been hampered by low energy and power density,as well as unsatisfactory long-cycle stability,mainly due to the lack of suitable electrode materials.In this context,we have developed manganese single atoms implanted in nitrogen-doped porous carbon nanosheets (MnSAs/NCNs) using a metal salt template method as cathodes for ZIHCs.The metal salt serves a dual purpose in the synthesis process:It facilitates the uniform dispersion of Mn atoms within the carbon matrix and acts as an activating agent to create the porous structure.When applied in ZIHCs,the MnSAs/NCNs electrode demonstrates exceptional performance,including a high capacity of 203 m Ah g^(-1),an energy density of 138 Wh kg^(-1)at 68 W kg^(-1),and excellent cycle stability with 91%retention over 10,000 cycles.Theoretical calculations indicate that the introduced Mn atoms modulate the local charge distribution of carbon materials,thereby improving the electrochemical property.This work demonstrates the significant potential of carbon materials with metal atoms in zinc-ion hybrid capacitors,not only in enhancing electrochemical performance but also in providing new insights and methods for developing high-performance energy storage devices.展开更多
Heterocyclic compounds play an important role in organic hole transport materials(HTMs)for perovskite solar cells(PSCs).Herein,a series of linear D-π-D HTMs(O-CBz,S-CBz,SO_(2)-CBz)with different dibenzoheterocycles c...Heterocyclic compounds play an important role in organic hole transport materials(HTMs)for perovskite solar cells(PSCs).Herein,a series of linear D-π-D HTMs(O-CBz,S-CBz,SO_(2)-CBz)with different dibenzoheterocycles core(dibenzofuran,dibenzothiophene,dibenzothiophene sulfone)were designed and synthesized,and their applications in PSCs were investigated.The intrinsic properties(CV,UV-vis,hole mobility and conductivity)were systematically investigated,demonstrating that all three materials are suitable HTMs for planar n-i-p type PSCs.Benefiting from the excellent hole mobility and conductivity,good film forming ability,and outstanding charge extraction and transport capability of S-CBz,FAPbI_(3)-based PSCs using S-CBz as HTM achieved a PCE of 25.0%,which is superior to that of Spiro-OMeTAD-based PSCs fabricated under the same conditions(23.9%).Furthermore,due to the interaction between S and Pb^(2+),SCBz-based PSC devices exhibited improved stability.This work demonstrates that dibenzothiophene-based architectures are promising candidates for high-performance HTMs in perovskite solar cell architectures.展开更多
Exploring the intrinsic reasons for the dynamic reconstruction of catalysts during electrocatalytic reactions and their impact on activity enhancement still face severe challenges. Herein, the bifunctional catalyst Ru...Exploring the intrinsic reasons for the dynamic reconstruction of catalysts during electrocatalytic reactions and their impact on activity enhancement still face severe challenges. Herein, the bifunctional catalyst Ru/V-Co O/CP with doping strategy and heterostructure was synthesized for overall water splitting.The Ru/V-Co O exhibits excellent activity for HER and OER with low overpotentials of 49, 147 m V at a current density of 10 m A/cm^(2) in 1.0 mol/L KOH, respectively. The assembled electrolytic cell just needs voltages of 1.47 and 1.71 V to achieve 10 and 350 m A/cm^(2)current density under the same conditions and delivers an outstanding stability for over 100 h, which is far superior to the commercial Ru O_(2)||Pt/C cell. Experimental and theoretical results indicate that the doping of V species and the formation of heterostructures lead to charge redistribution. More importantly, the leaching of V species induces electron transfer form Co to O and then Ru through the Co-O-Ru electron bridge, optimizes the adsorption strength of the key intermediate, thereby reducing the free energy barrier of the rate-determining step and improving catalytic activity. This work proposes an effective strategy of using cation dissolution to induce electron transfer through the electron bridge and thus regulate the electronic structure of catalysts,providing new ideas for the design and development of efficient and stable electrocatalysts.展开更多
The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a ...The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.展开更多
The recycling of CO_(2)through electrochemical processes offers a promising solution for alleviating the greenhouse effect;however,the activation of CO_(2)and desorption of^(*)CO in electrocatalytic CO_(2)reduction(EC...The recycling of CO_(2)through electrochemical processes offers a promising solution for alleviating the greenhouse effect;however,the activation of CO_(2)and desorption of^(*)CO in electrocatalytic CO_(2)reduction(ECR)frequently encounter high energy barriers and competitive hydrogen evolution reactions(HERs),which are urgent problems that need to be addressed.In this study,a catalyst(P100-Fe-N/C)with homogeneous P-tuned FeN_(2)binuclear sites(N_(2)PFe-FePN_(2))was successfully synthesised,demonstrating satisfactory performance in the ECR to CO.P100-Fe-N/C attains a peak FECOof 98.01%and a normalized TOF of 664.7 h-1at-0.7 VRHE,surpassing the performance of the Fe binuclear catalyst without P and singleatoms catalysts.In the MEA cell,a FECOexceeding 90%can still be achieved.Density functional theory analysis indicates that the asymmetric coordination configuration induced by the incorporation of P facilitates a reduction in the system's energy.The modulation of P results in the d-band centre of the catalyst being positioned closer to the Fermi level,which facilitates the interaction of the catalyst with CO_(2),allowing more electrons to be injected into the CO_(2)molecule at the Fe binuclear sites and inhibiting the HER.The P-tuned FeN_(2)binuclear sites effectively lower the^(*)CO desorption barrier.展开更多
The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challen...The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challenging.Herein,N-doped carbon(N-C)anchored atomically dispersed Ni-N_(3)site with proximity defects(Ni-N_(3)D)induced by Te atoms doping is reported.Benefitting from the inductive effect of proximity defect,the Ni-N_(3)D/Te-N-C catalyst performs excellent ORR and HER performance in alkaline and acid condition.Both in situ characterization and theoretical calculation reveal that the existence of proximity defect effect is conducive to lower rate-determining-step energy barrier of ORR and HER,thus accelerating the multielectron reaction kinetics.This work paves a novel strategy for constructing highactivity bifunctional SACs by defect engineering for development of sustainable energy.展开更多
The Ni single-atom catalyst dispersed on nitrogen doped graphene support has attracted much interest due to the high selectivity in electro-catalyzing CO_(2)reduction to CO,yet the chemical inertness of the metal cent...The Ni single-atom catalyst dispersed on nitrogen doped graphene support has attracted much interest due to the high selectivity in electro-catalyzing CO_(2)reduction to CO,yet the chemical inertness of the metal center renders it to exhibit electrochemical activity only under high overpotentials.Herein,we report P-and S-doped Ni single-atom catalysts,i.e.symmetric Ni_(1)/PN_(4)and asymmetric Ni1/SN_(3)C can exhibit high catalytic activity of CO_(2)reduction with stable potential windows.It is revealed that the key intermediate*COOH in CO_(2)electroreduction is stabilized by heteroatom doping,which stems from the upward shift of the axial d_(z2)orbital of the active metal Ni atom.Furthermore,we investigate the potential-dependent free energetics and dynamic properties at the electrochemical interface on the Ni1/SN3C catalyst using ab initio molecular dynamics simulations with a full explicit solvent model.Based on the potential-dependent microkinetic model,we predict that S-atom doped Ni SAC shifts the onset potential of CO_(2)electroreduction from–0.88 to–0.80 V vs.RHE,exhibiting better activity.Overall,this work provides an in-depth understanding of structure-activity relationships and atomic-level electrochemical interfaces of catalytic systems,and offers insights into the rational design of heteroatom-doped catalysts for targeted catalysis.展开更多
Lithium/fluorinated carbon(Li/CF_(x))batteries are greatly limited in their applications mostly due to poor rate performances.In this study,N,P co-doped biomass carbon was synthesized using melamine and phytic acid as...Lithium/fluorinated carbon(Li/CF_(x))batteries are greatly limited in their applications mostly due to poor rate performances.In this study,N,P co-doped biomass carbon was synthesized using melamine and phytic acid as doping sources,and the resulting product was then utilized as a precursor for CF_(x).The resulting fluorinated biomass carbon has a high degree of fluorination,exceeding the specific capacity of commercial fluorinated graphite while also demonstrating exceptional performance at high discharge rates.During the fluorination process,N,P-containing functional groups were removed from the crystalline lattice in the basal plane.This facilitates the formation of a defect-rich carbon matrix,enhancing the F/C ratio by improving the fluorinated active sites and obtaining more highly active semi-ionic bonds.Additionally,the abundant defects and porous structure promote Li^(+)diffusion.Density functional theory calculations indicated that doping modification effectively reduces the energy barrier for Li+migration,enhancing Li+transport efficiency.The prepared CF_(x)delivers material with a maximum specific capacity of 919 mAh·g^(-1),while maintaining a specific capacity of 702 mAh·g^(-1)at a high discharge current density of 20C(with a capacity retention rate of 76.4%).In this study,fluorinated N,P co-doped biomass carbon,exhibiting ultrahigh capacity and high-rate performance,was prepared for the first time,which can potentially advance the commercialization of CF_(x).展开更多
The utilization of covalent organic frameworks(COFs)holds great potential for achieving tailorable tuning of catalytic performance through bottom-up modulation of the reticular structure.In this work,we show that a si...The utilization of covalent organic frameworks(COFs)holds great potential for achieving tailorable tuning of catalytic performance through bottom-up modulation of the reticular structure.In this work,we show that a single-point structural alteration in the linkage within a nickel phthalocyanine(NiPc)-based series effectively modulates the catalytic performance of the COFs in electrochemical CO_(2)reduction reaction(CO_(2)RR).A Ni Pc-based COF series with three members which possess the same Ni Pc unit but different linkages,including piperazine,dioxin,and dithiine,have been constructed by nucleophilic aromatic substitution reaction between octafluorophthalocyanine nickel and tetrasubstituted benzene linkers with different bridging groups.Among these COFs,the dioxin-linked COF showed the best activity of CO_(2)RR with a current density of CO(j_(CO))=-27.99 m A cm^(-2)at-1.0 V(versus reversible hydrogen electrode,RHE),while the COF with piperazine linkage demonstrated an excellent selectivity of Faradaic efficiency for CO(FECO)up to 90.7%at a pretty low overpotential of 0.39 V.In addition,both a high FECO value close to 100%and a reasonable jCO of-8.20 m A cm^(-2)at the potential of-0.8 V(versus RHE)were obtained by the piperazine-linked COF,making it one of the most competitive candidates among COF-based materials.Mechanistic studies exhibited that single-point structural alteration could tailor the electron density in Ni sites and alter the interaction between the active sites and the key intermediates adsorbed and desorbed,thereby tuning the electrochemical performance during CO_(2)RR process.展开更多
The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by...The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by compositing silicon and carbon materials has been employed to tackle the above challenges,however,the exorbitant costs and the uncertainty of the conductive structure persist,leaving ample room for improvement.Herein,silicon nanoparticles were innovatively composited with eco-friendly biochar sourced from cotton to fabricate a 3D globally consecutive conductive network.The network serves a dual purpose:enhancing overall electrode conductivity and serving as a scaffold to maintain electrode integrity.The conductivity of the network was further augmented by introducing P-doping at the optimum doping temperature of 350℃.Unlike the local conductive sites formed by the mere mixing of silicon and conductive agents,the consecutive network can affirm the improvement of the conductivity at a macro level.Moreover,first-principle calculations further validated that the rapid diffusion of Li^(+)is attributed to the tailored electronic microstructure and charge rearrangement of the fiber.The prepared consecutive conductive Si@P-doped carbonized cotton fiber anode outperforms the inconsecutive Si@Graphite anode in both cycling performance(capacity retention of 1777.15 mAh g^(-1) vs.682.56 mAh g^(-1) after 150 cycles at 0.3 C)and rate performance(1244.24 mAh g^(-1) vs.370.28 mAh g^(-1) at 2.0 C).The findings of this study may open up new avenues for the development of globally interconnected conductive networks in Si-based anodes,thereby enabling the fabrication of high-performance LIBs.展开更多
Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promisin...Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies.展开更多
The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large en...The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large energy consumption,resulting in low throughputs and efficiency.In our contribution,a novel synthesis method is proposed,involving the formation of HC nanosheets(NS-CNs)within minutes by creating an anoxic environment through flame combustion and further introducing sulfur and nitrogen sources to achieve heteroatom doping.The effect of heterogeneous element doping on the microstructure of HC is quantitatively analyzed by high-resolution transmission electron microscopy and image processing technology.Combined with density functional theory calculation,it is verified that the functionalized HC exhibits stronger Na^(+)adsorption ability,electron gain ability,and Na^(+) migration ability.As a result,NS-CNs as SIB anodes provide an ultrahigh reversible capacity of 542.7mAh g^(-1) at 0.1Ag^(-1),and excellent rate performance with a reversible capacity of 236.4mAh g^(-1) at 2Ag^(-1) after 1200 cycles.Furthermore,full cell assembled with NS-CNs as the can present 230mAh g^(-1) at 0.5Ag^(-1) after 150 cycles.Finally,in/ex situ techniques confirm that the excellent sodium storage properties of NS-CNs are due to the construction of abundant active sites based on the novel synthesis method for realizing the reversible adsorption of Na^(+).This work provides a novel strategy to develop novel carbons and gives deep insights for the further investigation of facile preparation methods to develop high-performance carbon anodes for alkali-ion batteries.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2021YFA1500800)the National Natural Science Foundation of China(Nos.51825204,52072377,521888101 and 51402199)+6 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2020192)the International Partnership Program of Chinese Academy of Sciences(No.174321KYSB20200005)China Postdoctoral Science Foundation(No.2017M621137)Liaoning Revitalization Talents Program(No.XLYC2007193)the Natural Science Foundation of Liaoning Province(Nos.2021-MS-014 and 2021NLTS1210)the University Innovation Talent Foundation of Liaoning Province(No.LR2018074)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(No.KF1708)。
文摘Delafossite CuFeO_(2) is a promising photocathode material for cost-efficiently photoelectrochemical(PEC)water splitting,but the unfavorable conductivity and fast recombination dynamics of photogenerated carriers limit its PEC activity for water reduction.Here,we developed a heterostructure photocathode consisting of the Cu-doped NiO(Cu:NiO)hole selective layer(HSL)and Ni-doped CuFeO_(2)(Ni:CuFeO_(2))active layer by simply annealing a homogeneous Cu-Fe oxalate layer grown on the Ni film deposited on the fluorine doped tin oxide(FTO)substrate.The obtained heterostructure of Cu:NiO/Ni:CuFeO_(2) with enhanced charge carrier transportability and high-quality interface greatly promotes the separation of photogenerated carriers.Accordingly,the Cu:NiO/Ni:CuFeO_(2) photocathode exhibits a high photocurrent density of~0.9 mA·cm^(-2 )at 0.2 V(vs.reversible hydrogen electrode,RHE),outperforming most of the reported bare CuFeO_(2) photocathodes in the literature.And the photocurrent density can be further improved to 1.2 mA·cm^(-2) after decorating NiSx cocatalyst.
基金National key R&D Program of China(No.2022YFC3701903)natural science foundation of Shanxi Province(No.202203021211178)National Natural Science Foundation of China(51901209)for financial support.
文摘Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The toluene adsorption capacities of the regeneration AC(RAC)samples can be significantly improved by adopting the heteroatomic modification strategy.RAC-P and RAC-S have the same specific surface area(1156 m^(2)/g)and similar porous structures.However,they have different toluene adsorption capacities,with 316.22 mg/g for RAC-P and 460.12 mg/g for RAC-S,which are 1.6 and 2.4 times greater than that for RAC.The X-ray photoelectron spectroscopy measurements showed that the increase in the amount ofπ–π^(2)chemical bond over the AC surface results in the improvement of the toluene adsorption performance.The density functional theory results showed that the S-containing functional groups loaded near the defect sites of RAC-S promote toluene adsorption.Moreover,reusability tests showed that RAC-S still retains 86%of its adsorption activity after four consecutive adsorption–desorption experiments.This indicates that the heteroatomic modification method affords excellent toluene adsorption performance and recycling practicability,which not only is beneficial for achieving the rational utilization of solid waste resources but also provides a practical method for the efficient elimination of volatile organic compounds.
基金jointly funded by the National Natural Science Foundation of China(Grant Nos.42072178 and U2244207)the funding project of Northeast Geological S&T Innovation Center of China Geological Survey(Grant No.QCJJ2022-37)Geological Survey Project of China Geological Survey(Grant Nos.DD20190114,DD20230022,and DD20240045)。
文摘Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin,NE China.Focusing on 30 core samples obtained from the first shale oil parameter well,named SYY3 in the study area,we systematically analyzed the composition and stratigraphic distribution of the K_(2)qn~1 heteroatomic compounds using electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry(ESI FT-ICR MS),to assess their geological relevance to shale oil.The findings indicate that in the negative ion mode,the heteroatomic compounds predominantly consist of N_(1),N_(1)O_(1)-N_(1)O_(8),O_(1)-O_(8),O_(1)S_(1)-O_(6)S_(1);contrastingly,in the positive ion mode,they are primarily composed of N_(1)-N_(2),N_(1)O_(1)-N_(1)O_(4),N_(2)O_(1),O_(1)-O_(4),O_(1)S_(1)-O_(2)S_(1).Heteroatomic compound distributions vary significantly with depth in the negative ion mode,with minor variations in the positive ion mode.These distributions are categorized into three types based on the negative ion ratio((N_(1)+N_(1)O_(x))/O_(x)):TypeⅠ(>1.5),TypeⅡ(0.8-1.5),and TypeⅢ(<0.8);typesⅠandⅡgenerally exhibit a broader range of carbon numbers compared to TypeⅢ.The distribution of double bond equivalent(DBE)values across various sample types exhibits minimal variance,whereas that of carbon numbers shows substantial differences.Variations in heteroatomic compound compositions among the samples might have resulted from vertical sedimentary heterogeneity and differing biotic contributions.TypeⅢsamples show a decrease in total organic carbon(TOC)and free oil content(S_(1))compared to typesⅠandⅡ,but an increased oil saturation index(OSI),indicating a lower content of free oil but a higher proportion of movable oil.The reduced content of N-containing compounds implies lower paleolake productivity during deposition,leading to a reduction in TOC and S_(1).A lower TOC can enhance oil movability due to reduced oil adsorption,and the decreased presence of polar nitrogenous macromolecules with fewer highC-number heteroatomic compounds further promote shale oil movability.Additionally,the negative ion ratios of N1/N1O1and O2/O1 exhibit positive and negative correlations with the values of TOC,S_(1),and extractable organic matter(EOM),respectively,indicating that the salinity and redox conditions of the depositional water body are the primary controlling factors for both organic matter enrichment and shale oil accumulation.
基金supported by the National Key Research and Development Program of China(No.2022YFA1602700 and 2022YFB2502104)the National Natural Science Foundation of China(22375089)the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China(BE2022332).
文摘Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts.
基金financially supported by the National Natural Science Foundation of China(No.52202228,52402298)funded by the Science Research Project of Hebei Education Department(No.BJK2022011)+3 种基金the Central Funds Guiding the Local Science and Technology Development of Hebei Province(No.236Z4404G)the Beijing Tianjin Hebei Basic Research Cooperation Special Project(No.E2024202273)the Science and Technology Correspondent Project of Tianjin(24YDTPJC00240)supported by the U.S.Department of Energy’s Office of Science,Office of Basic Energy Science,Materials Sciences and Engineering Division。
文摘Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fatigue and lattice oxygen loss.In this work,an epitaxial surface rock-salt nanolayer is successfully developed on the LiNi_(0.9)Co_(0.1)O_(2)sub-surface via heteroatom anchoring utilizing high-valence element molybdenum modification.This in-situ formed conformal buffer phase with a thickness of 1.2 nm effectively suppresses the continuous interphase side-reactions,and thus maintains the excellent structure integrity at high voltage.Furthermore,theoretical calculations indicate that the lattice oxygen reversibility in the anion framework of the optimized sample is obviously enhanced due to the higher content of O 2p states near the Fermi level than that of the pristine one.Meanwhile,the stronger Mo-O bond further reduces cell volume alteration,which improves the bulk structure stability of modified materials.Besides,the detailed charge compensation mechanism suggests that the average oxidation state of Ni is reduced,which induces more active Li+participating in the redox reactions,boosting the cell energy density.As a result,the uniquely designed cathode materials exhibit an extraordinary discharge capacity of 245.4 mAh g^(-1)at 0.1 C,remarkable rate performance of 169.3 mAh g^(-1)at 10 C at 4.5 V,and a high capacity retention of 70.5% after 1000 cycles in full cells at a high cut-off voltage of 4.4 V.This strategy provides an valuable insight into constructing distinctive heterostructure on highperformance Ni-rich layered cathodes for LIBs.
基金the National Natural Science Foundation of China(No.52174283)the Shandong Provincial Natural Science Foundation(No.ZR2020MB044)Postgraduate Innovation Engineering Project of China University of Petroleum(East China)(No.YCX2021147).
文摘Although Fe-Ni combination performs well in transition metal-based oxygen evolution reaction(OER)electrocatalysts,there are lack of clear and general regulations mechanism to fully play the synergistic catalytic effect.Here,we made the utmost of the interaction of Fe–Ni heteroatomic pair to obtain a highly active Fe-Ni(oxy)hydroxide catalytic layer on iron foam(IF)and nickel foam(NF)by in-situ electrochemical deposition and rapid surface reconstruction,which only required 327 and 351 mV overpotential to provide a large current of 1,000 mA·cm^(−2),respectively.The results confirm that the moderate Ni-rich heteroatomic bonding(Ni–O–Fe–O–Ni)formed by adjusting the Ni/Fe ratio on the catalyst surface is important to offer predominant OER performance.Fe is a key component that enhances OER activity of Ni(O)OH,but Fe-rich structural surface formed by Fe–O–Ni–O–Fe bonding is not ideal.Finally,the remarkable oxygen evolution performance of the prepared Ni2Fe(O)OH/IF and FeNi2(O)OH/NF can be chalked up to the optimized electronic structure of Fe–Ni heteroatomic bonding,the efficient gas spillover,the fast electron transport,and nanosheet clusters morphology.In summary,our work suggests a comprehensive regulation mechanism for the construction of efficient Fe-Ni(oxy)hydroxide catalytic layer on inexpensive,stable,and self-supporting metallic material surface.
文摘The development of metal-free carbon catalysts has garnered significant attention as a promising approach to address the challenges of sustainable catalysis,particularly in the replacement of toxic and environmentally hazardous mercury-based systems for the coal-based PVC industry.Within a decade of development,the catalytic performance of carbon catalysts has been improved greatly and even shows superiorities over metal catalysts in some cases,which have demonstrated great potential as sustainable alternatives to mercury catalysts.This review provides a comprehensive summary of the recent advancements in carbon catalysts for acetylene hydrochlorination.It encompasses a wide range of aspects,including the identification of active sites from heteroatom doping to intrinsic carbon defects,the various synthetic strategies employed,the reaction and deactivation mechanisms of carbon catalysts,and the current insights into the key challenges that are encountered on the journey from laboratory research to scalable commercialization within the field of carbon catalysts.The review offers foundational insights and practical guidelines for designing green carbon catalysts systems,not only for acetylene hydrochlorination but also for other heterogeneous catalytic reactions.
基金funding support by the Changsha Natural Science Foundation(grant no.kq2208023)National Natural Scientific Foundation of China(grant no.12074113).
文摘Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incorporating heteroatom strategy via one-step hydrothermal approach to adjust more than one factor of Mn-doped NiFe(oxy)hydroxide(Mn-NiFeOOH/LDH)heterojunction.Mn doping regulates heterojunction morphology(reducing nanoparticles and becoming thinner and denser nanosheets),Ni/Fe ratio and valence states(Ni^(2+),Ni^(3+),and Ni^(3+Δ))of Ni ions.The former could effectively increase surface active sites,and the latter two reduce the content of Fe in the Mnx-NiFeOOH/LDH heterojunction,en-abling more Ni^(2+)convert to Ni^(3+/3+Δ)that have higher intrinsic OER activity.As a result,the first-rank Mn-NiFeOOH/LDH with ultra-low overpotential of 185 mV@20 mA cm^(-2) and 296 mV@500 mA cm^(-2),and the improved OER performance are outdo to those of commercial RuO_(2) catalyst for OER.Moreover,the Mn-NiFeOOH/LDH affords the earliest initial potential(1.392 V vs.RHE),corresponds to a recorded low overpotential(162 mV).Based on the density functional theory(DFT),Mn dopants can alter intermedi-ate adsorption energy and effectively decrease∗OOH’s energy barrier.This research exhibits a feasible strategy to design low cost electrocatalysts and provide new possibilities for future industrialization.
基金National Natural Science Foundation of China (No. 22179123)Taishan Scholar Program of Shandong Province,China (No. tsqn202211048)Fundamental Research Funds for the Central Universities (No.202262010)。
文摘Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost,high safety,and environmental friendliness.However,their progress has been hampered by low energy and power density,as well as unsatisfactory long-cycle stability,mainly due to the lack of suitable electrode materials.In this context,we have developed manganese single atoms implanted in nitrogen-doped porous carbon nanosheets (MnSAs/NCNs) using a metal salt template method as cathodes for ZIHCs.The metal salt serves a dual purpose in the synthesis process:It facilitates the uniform dispersion of Mn atoms within the carbon matrix and acts as an activating agent to create the porous structure.When applied in ZIHCs,the MnSAs/NCNs electrode demonstrates exceptional performance,including a high capacity of 203 m Ah g^(-1),an energy density of 138 Wh kg^(-1)at 68 W kg^(-1),and excellent cycle stability with 91%retention over 10,000 cycles.Theoretical calculations indicate that the introduced Mn atoms modulate the local charge distribution of carbon materials,thereby improving the electrochemical property.This work demonstrates the significant potential of carbon materials with metal atoms in zinc-ion hybrid capacitors,not only in enhancing electrochemical performance but also in providing new insights and methods for developing high-performance energy storage devices.
基金supported by the financial support from the National Natural Science Foundation of China(Nos.22279046,22179053)Natural Science Excellent Youth Foundation of Jiangsu Province(No.BK20220112)Special Foundation for Carbon Peak Carbon Neutralization Technology Innovation Program of Jiangsu Province(No.BE2022026-2).
文摘Heterocyclic compounds play an important role in organic hole transport materials(HTMs)for perovskite solar cells(PSCs).Herein,a series of linear D-π-D HTMs(O-CBz,S-CBz,SO_(2)-CBz)with different dibenzoheterocycles core(dibenzofuran,dibenzothiophene,dibenzothiophene sulfone)were designed and synthesized,and their applications in PSCs were investigated.The intrinsic properties(CV,UV-vis,hole mobility and conductivity)were systematically investigated,demonstrating that all three materials are suitable HTMs for planar n-i-p type PSCs.Benefiting from the excellent hole mobility and conductivity,good film forming ability,and outstanding charge extraction and transport capability of S-CBz,FAPbI_(3)-based PSCs using S-CBz as HTM achieved a PCE of 25.0%,which is superior to that of Spiro-OMeTAD-based PSCs fabricated under the same conditions(23.9%).Furthermore,due to the interaction between S and Pb^(2+),SCBz-based PSC devices exhibited improved stability.This work demonstrates that dibenzothiophene-based architectures are promising candidates for high-performance HTMs in perovskite solar cell architectures.
基金supported by National Natural Science Foundation of China (No. 22006120)the Fundamental Research Funds for the Central Universities (No. SWU-XDJH202314)+1 种基金the Program for Innovation Team Building at Institutions of Higher Education in Chongqing (No. CXTDX201601011)Chongqing Municipal Natural Science Foundation (No. cstc2018jcyj AX0625)。
文摘Exploring the intrinsic reasons for the dynamic reconstruction of catalysts during electrocatalytic reactions and their impact on activity enhancement still face severe challenges. Herein, the bifunctional catalyst Ru/V-Co O/CP with doping strategy and heterostructure was synthesized for overall water splitting.The Ru/V-Co O exhibits excellent activity for HER and OER with low overpotentials of 49, 147 m V at a current density of 10 m A/cm^(2) in 1.0 mol/L KOH, respectively. The assembled electrolytic cell just needs voltages of 1.47 and 1.71 V to achieve 10 and 350 m A/cm^(2)current density under the same conditions and delivers an outstanding stability for over 100 h, which is far superior to the commercial Ru O_(2)||Pt/C cell. Experimental and theoretical results indicate that the doping of V species and the formation of heterostructures lead to charge redistribution. More importantly, the leaching of V species induces electron transfer form Co to O and then Ru through the Co-O-Ru electron bridge, optimizes the adsorption strength of the key intermediate, thereby reducing the free energy barrier of the rate-determining step and improving catalytic activity. This work proposes an effective strategy of using cation dissolution to induce electron transfer through the electron bridge and thus regulate the electronic structure of catalysts,providing new ideas for the design and development of efficient and stable electrocatalysts.
基金Natural Science Foundation of Xinjiang Uygur Autonomous Region,Grant/Award Number:2023D01C11National Natural Science Foundation of China,Grant/Award Numbers:22369019,U2003216+2 种基金Special Projects on Regional Collaborative Innovation-SCO Science and Technology Partnership Program,International Science and Technology Cooperation Program,Grant/Award Number:2022E01020Tianshan Talent Training Program,Grant/Award Number:2023TSYCLJ0019National Key Research and Development Program of China,Grant/Award Numbers:2022YFB4101600,2022YFB4101601。
文摘The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.
基金financially supported by the National Natural Science Foundation of China-Yunnan Joint Fund(U2002213)Science and Technology Talent and Platform Program of Yunnan Provincial Science and Technology Department(202305AM070001)+1 种基金the Xingdian Talent Program of Yunnan Provincethe Double-First Class University Plan(C176220100042).
文摘The recycling of CO_(2)through electrochemical processes offers a promising solution for alleviating the greenhouse effect;however,the activation of CO_(2)and desorption of^(*)CO in electrocatalytic CO_(2)reduction(ECR)frequently encounter high energy barriers and competitive hydrogen evolution reactions(HERs),which are urgent problems that need to be addressed.In this study,a catalyst(P100-Fe-N/C)with homogeneous P-tuned FeN_(2)binuclear sites(N_(2)PFe-FePN_(2))was successfully synthesised,demonstrating satisfactory performance in the ECR to CO.P100-Fe-N/C attains a peak FECOof 98.01%and a normalized TOF of 664.7 h-1at-0.7 VRHE,surpassing the performance of the Fe binuclear catalyst without P and singleatoms catalysts.In the MEA cell,a FECOexceeding 90%can still be achieved.Density functional theory analysis indicates that the asymmetric coordination configuration induced by the incorporation of P facilitates a reduction in the system's energy.The modulation of P results in the d-band centre of the catalyst being positioned closer to the Fermi level,which facilitates the interaction of the catalyst with CO_(2),allowing more electrons to be injected into the CO_(2)molecule at the Fe binuclear sites and inhibiting the HER.The P-tuned FeN_(2)binuclear sites effectively lower the^(*)CO desorption barrier.
基金financially supported by the National Natural Science Foundation of China(22478432,22108306,22178388)Taishan Scholars Program of Shandong Province(tsqn201909065)+2 种基金Shandong Provincial Natural Science Foundation(ZR2024JQ004)Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities(No.25CX04020A)。
文摘The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challenging.Herein,N-doped carbon(N-C)anchored atomically dispersed Ni-N_(3)site with proximity defects(Ni-N_(3)D)induced by Te atoms doping is reported.Benefitting from the inductive effect of proximity defect,the Ni-N_(3)D/Te-N-C catalyst performs excellent ORR and HER performance in alkaline and acid condition.Both in situ characterization and theoretical calculation reveal that the existence of proximity defect effect is conducive to lower rate-determining-step energy barrier of ORR and HER,thus accelerating the multielectron reaction kinetics.This work paves a novel strategy for constructing highactivity bifunctional SACs by defect engineering for development of sustainable energy.
文摘The Ni single-atom catalyst dispersed on nitrogen doped graphene support has attracted much interest due to the high selectivity in electro-catalyzing CO_(2)reduction to CO,yet the chemical inertness of the metal center renders it to exhibit electrochemical activity only under high overpotentials.Herein,we report P-and S-doped Ni single-atom catalysts,i.e.symmetric Ni_(1)/PN_(4)and asymmetric Ni1/SN_(3)C can exhibit high catalytic activity of CO_(2)reduction with stable potential windows.It is revealed that the key intermediate*COOH in CO_(2)electroreduction is stabilized by heteroatom doping,which stems from the upward shift of the axial d_(z2)orbital of the active metal Ni atom.Furthermore,we investigate the potential-dependent free energetics and dynamic properties at the electrochemical interface on the Ni1/SN3C catalyst using ab initio molecular dynamics simulations with a full explicit solvent model.Based on the potential-dependent microkinetic model,we predict that S-atom doped Ni SAC shifts the onset potential of CO_(2)electroreduction from–0.88 to–0.80 V vs.RHE,exhibiting better activity.Overall,this work provides an in-depth understanding of structure-activity relationships and atomic-level electrochemical interfaces of catalytic systems,and offers insights into the rational design of heteroatom-doped catalysts for targeted catalysis.
基金supported by Fujian Science and Technology Planning Projects of China(Nos.2022T3067 and 2023H0045)the Self-deployment Project Research Programs of Haixi Institutes,Chinese Academy of Sciences(No.CXZX-2022-JQ12)the Self-deployment project of XIREM(No.2023GG02).
文摘Lithium/fluorinated carbon(Li/CF_(x))batteries are greatly limited in their applications mostly due to poor rate performances.In this study,N,P co-doped biomass carbon was synthesized using melamine and phytic acid as doping sources,and the resulting product was then utilized as a precursor for CF_(x).The resulting fluorinated biomass carbon has a high degree of fluorination,exceeding the specific capacity of commercial fluorinated graphite while also demonstrating exceptional performance at high discharge rates.During the fluorination process,N,P-containing functional groups were removed from the crystalline lattice in the basal plane.This facilitates the formation of a defect-rich carbon matrix,enhancing the F/C ratio by improving the fluorinated active sites and obtaining more highly active semi-ionic bonds.Additionally,the abundant defects and porous structure promote Li^(+)diffusion.Density functional theory calculations indicated that doping modification effectively reduces the energy barrier for Li+migration,enhancing Li+transport efficiency.The prepared CF_(x)delivers material with a maximum specific capacity of 919 mAh·g^(-1),while maintaining a specific capacity of 702 mAh·g^(-1)at a high discharge current density of 20C(with a capacity retention rate of 76.4%).In this study,fluorinated N,P co-doped biomass carbon,exhibiting ultrahigh capacity and high-rate performance,was prepared for the first time,which can potentially advance the commercialization of CF_(x).
基金supported by the National Natural Science Foundation of China(22305238)the Anhui Provincial Natural Science Foundation(2308085MB35)。
文摘The utilization of covalent organic frameworks(COFs)holds great potential for achieving tailorable tuning of catalytic performance through bottom-up modulation of the reticular structure.In this work,we show that a single-point structural alteration in the linkage within a nickel phthalocyanine(NiPc)-based series effectively modulates the catalytic performance of the COFs in electrochemical CO_(2)reduction reaction(CO_(2)RR).A Ni Pc-based COF series with three members which possess the same Ni Pc unit but different linkages,including piperazine,dioxin,and dithiine,have been constructed by nucleophilic aromatic substitution reaction between octafluorophthalocyanine nickel and tetrasubstituted benzene linkers with different bridging groups.Among these COFs,the dioxin-linked COF showed the best activity of CO_(2)RR with a current density of CO(j_(CO))=-27.99 m A cm^(-2)at-1.0 V(versus reversible hydrogen electrode,RHE),while the COF with piperazine linkage demonstrated an excellent selectivity of Faradaic efficiency for CO(FECO)up to 90.7%at a pretty low overpotential of 0.39 V.In addition,both a high FECO value close to 100%and a reasonable jCO of-8.20 m A cm^(-2)at the potential of-0.8 V(versus RHE)were obtained by the piperazine-linked COF,making it one of the most competitive candidates among COF-based materials.Mechanistic studies exhibited that single-point structural alteration could tailor the electron density in Ni sites and alter the interaction between the active sites and the key intermediates adsorbed and desorbed,thereby tuning the electrochemical performance during CO_(2)RR process.
基金supported by the National Natural Science Foundation of China(No.12205252)the Basic Public Welfare Re-search Special Project of Zhejiang Province(No.LZY22B040001)+4 种基金the Quzhou Science and Technology Plan Project(No.2022K39)Science and Technology Project of Quzhou Research Institute,Zhejiang University(Nos.IZQ2021KJ2032,IZQ2022KJ3014,and IZQ2022KJ3002)Independent scientific Research Project of Quzhou Research Institute,Zhejiang University(No.IZQ2021RCZX007)New“115 talents”Project ofQuzhou,National Nature Science Foundation of China(No.52172244)Fundamental Research Funds for the Central University(No.226202200053).
文摘The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by compositing silicon and carbon materials has been employed to tackle the above challenges,however,the exorbitant costs and the uncertainty of the conductive structure persist,leaving ample room for improvement.Herein,silicon nanoparticles were innovatively composited with eco-friendly biochar sourced from cotton to fabricate a 3D globally consecutive conductive network.The network serves a dual purpose:enhancing overall electrode conductivity and serving as a scaffold to maintain electrode integrity.The conductivity of the network was further augmented by introducing P-doping at the optimum doping temperature of 350℃.Unlike the local conductive sites formed by the mere mixing of silicon and conductive agents,the consecutive network can affirm the improvement of the conductivity at a macro level.Moreover,first-principle calculations further validated that the rapid diffusion of Li^(+)is attributed to the tailored electronic microstructure and charge rearrangement of the fiber.The prepared consecutive conductive Si@P-doped carbonized cotton fiber anode outperforms the inconsecutive Si@Graphite anode in both cycling performance(capacity retention of 1777.15 mAh g^(-1) vs.682.56 mAh g^(-1) after 150 cycles at 0.3 C)and rate performance(1244.24 mAh g^(-1) vs.370.28 mAh g^(-1) at 2.0 C).The findings of this study may open up new avenues for the development of globally interconnected conductive networks in Si-based anodes,thereby enabling the fabrication of high-performance LIBs.
基金Key Research and Development Program of Zhejiang,Grant/Award Number:2021C03022National Natural Science Foundation of China,Grant/Award Numbers:22002104,22272115,22202145,22202146,22102112,22202147。
文摘Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies.
基金supported by the National Natural Science Foundation of China (Grant Nos.51872236,52072307)MOE SUTD Kickstarter Innitiative (SKI 2021_02_16).
文摘The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large energy consumption,resulting in low throughputs and efficiency.In our contribution,a novel synthesis method is proposed,involving the formation of HC nanosheets(NS-CNs)within minutes by creating an anoxic environment through flame combustion and further introducing sulfur and nitrogen sources to achieve heteroatom doping.The effect of heterogeneous element doping on the microstructure of HC is quantitatively analyzed by high-resolution transmission electron microscopy and image processing technology.Combined with density functional theory calculation,it is verified that the functionalized HC exhibits stronger Na^(+)adsorption ability,electron gain ability,and Na^(+) migration ability.As a result,NS-CNs as SIB anodes provide an ultrahigh reversible capacity of 542.7mAh g^(-1) at 0.1Ag^(-1),and excellent rate performance with a reversible capacity of 236.4mAh g^(-1) at 2Ag^(-1) after 1200 cycles.Furthermore,full cell assembled with NS-CNs as the can present 230mAh g^(-1) at 0.5Ag^(-1) after 150 cycles.Finally,in/ex situ techniques confirm that the excellent sodium storage properties of NS-CNs are due to the construction of abundant active sites based on the novel synthesis method for realizing the reversible adsorption of Na^(+).This work provides a novel strategy to develop novel carbons and gives deep insights for the further investigation of facile preparation methods to develop high-performance carbon anodes for alkali-ion batteries.