期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Triggering heteroatomic interdiffusion in one-pot-oxidation synthesized NiO/CuFeO_(2) heterojunction photocathodes for efficient solar hydrogen production from water splitting 被引量:7
1
作者 Fei Han Wei Xu +4 位作者 Chun-Xu Jia Xiang-Tao Chen Ying-Peng Xie Chao Zhen Gang Liu 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期853-861,共9页
Delafossite CuFeO_(2) is a promising photocathode material for cost-efficiently photoelectrochemical(PEC)water splitting,but the unfavorable conductivity and fast recombination dynamics of photogenerated carriers limi... Delafossite CuFeO_(2) is a promising photocathode material for cost-efficiently photoelectrochemical(PEC)water splitting,but the unfavorable conductivity and fast recombination dynamics of photogenerated carriers limit its PEC activity for water reduction.Here,we developed a heterostructure photocathode consisting of the Cu-doped NiO(Cu:NiO)hole selective layer(HSL)and Ni-doped CuFeO_(2)(Ni:CuFeO_(2))active layer by simply annealing a homogeneous Cu-Fe oxalate layer grown on the Ni film deposited on the fluorine doped tin oxide(FTO)substrate.The obtained heterostructure of Cu:NiO/Ni:CuFeO_(2) with enhanced charge carrier transportability and high-quality interface greatly promotes the separation of photogenerated carriers.Accordingly,the Cu:NiO/Ni:CuFeO_(2) photocathode exhibits a high photocurrent density of~0.9 mA·cm^(-2 )at 0.2 V(vs.reversible hydrogen electrode,RHE),outperforming most of the reported bare CuFeO_(2) photocathodes in the literature.And the photocurrent density can be further improved to 1.2 mA·cm^(-2) after decorating NiSx cocatalyst. 展开更多
关键词 Photoelectrochemical(PEC)water splitting NiO/CuFeO_(2)hybrid photocathode heteroatomic interdiffusion
原文传递
Heteroatomic Modification of Solid-Waste-Based Mesoporous Carbon for Volatile Organic Compound Adsorption
2
作者 Liu Jun Li Zhi +7 位作者 Xu Ke Zhang Xinyang Li Yunpeng Wang Ya Zhang Yongfa Yang Song Liu Shoujun Li Junhua 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期66-78,共13页
Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The tol... Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The toluene adsorption capacities of the regeneration AC(RAC)samples can be significantly improved by adopting the heteroatomic modification strategy.RAC-P and RAC-S have the same specific surface area(1156 m^(2)/g)and similar porous structures.However,they have different toluene adsorption capacities,with 316.22 mg/g for RAC-P and 460.12 mg/g for RAC-S,which are 1.6 and 2.4 times greater than that for RAC.The X-ray photoelectron spectroscopy measurements showed that the increase in the amount ofπ–π^(2)chemical bond over the AC surface results in the improvement of the toluene adsorption performance.The density functional theory results showed that the S-containing functional groups loaded near the defect sites of RAC-S promote toluene adsorption.Moreover,reusability tests showed that RAC-S still retains 86%of its adsorption activity after four consecutive adsorption–desorption experiments.This indicates that the heteroatomic modification method affords excellent toluene adsorption performance and recycling practicability,which not only is beneficial for achieving the rational utilization of solid waste resources but also provides a practical method for the efficient elimination of volatile organic compounds. 展开更多
关键词 waste activated carbon toluene adsorption heteroatomic modification functional groups DFT analysis
在线阅读 下载PDF
Variation of Heteroatomic Compounds from the First Member of the Upper Cretaceous Qingshankou Formation in the Sanzhao Sag,Songliao Basin(NE China)using ESI FT-ICR MS and its Shale Oil Geological Significance
3
作者 XIAO Fei YANG Jianguo +3 位作者 YAO Yulai LI Shichao HUANG Yiming GAO Xiaoyong 《Acta Geologica Sinica(English Edition)》 2025年第3期840-861,共22页
Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin... Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin,NE China.Focusing on 30 core samples obtained from the first shale oil parameter well,named SYY3 in the study area,we systematically analyzed the composition and stratigraphic distribution of the K_(2)qn~1 heteroatomic compounds using electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry(ESI FT-ICR MS),to assess their geological relevance to shale oil.The findings indicate that in the negative ion mode,the heteroatomic compounds predominantly consist of N_(1),N_(1)O_(1)-N_(1)O_(8),O_(1)-O_(8),O_(1)S_(1)-O_(6)S_(1);contrastingly,in the positive ion mode,they are primarily composed of N_(1)-N_(2),N_(1)O_(1)-N_(1)O_(4),N_(2)O_(1),O_(1)-O_(4),O_(1)S_(1)-O_(2)S_(1).Heteroatomic compound distributions vary significantly with depth in the negative ion mode,with minor variations in the positive ion mode.These distributions are categorized into three types based on the negative ion ratio((N_(1)+N_(1)O_(x))/O_(x)):TypeⅠ(>1.5),TypeⅡ(0.8-1.5),and TypeⅢ(<0.8);typesⅠandⅡgenerally exhibit a broader range of carbon numbers compared to TypeⅢ.The distribution of double bond equivalent(DBE)values across various sample types exhibits minimal variance,whereas that of carbon numbers shows substantial differences.Variations in heteroatomic compound compositions among the samples might have resulted from vertical sedimentary heterogeneity and differing biotic contributions.TypeⅢsamples show a decrease in total organic carbon(TOC)and free oil content(S_(1))compared to typesⅠandⅡ,but an increased oil saturation index(OSI),indicating a lower content of free oil but a higher proportion of movable oil.The reduced content of N-containing compounds implies lower paleolake productivity during deposition,leading to a reduction in TOC and S_(1).A lower TOC can enhance oil movability due to reduced oil adsorption,and the decreased presence of polar nitrogenous macromolecules with fewer highC-number heteroatomic compounds further promote shale oil movability.Additionally,the negative ion ratios of N1/N1O1and O2/O1 exhibit positive and negative correlations with the values of TOC,S_(1),and extractable organic matter(EOM),respectively,indicating that the salinity and redox conditions of the depositional water body are the primary controlling factors for both organic matter enrichment and shale oil accumulation. 展开更多
关键词 oil movability shale-oil enrichment heteroatomic compounds Qingshankou Formation Sanzhao sag Songliao Basin
在线阅读 下载PDF
Heteroatoms Synergistic Anchoring Vacancies in Phosphorus-Doped CoSe_(2)Enable Ultrahigh Activity and Stability in Li-S Batteries
4
作者 Xiaoya Zhou Wei Mao +4 位作者 Chengwei Ye Qi Liang Peng Wang Xuebin Wang Shaochun Tang 《Nano-Micro Letters》 2025年第12期305-318,共14页
Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or exce... Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts. 展开更多
关键词 VACANCY heteroatomic anchoring Vacancy migration Activity/stability trade-off ELECTROCATALYSTS
在线阅读 下载PDF
An epitaxial surface heterostructure anchoring approach for high-performance Ni-rich layered cathodes 被引量:1
5
作者 Weili Sun Qingqing Zhang +8 位作者 Xiao-Guang Sun Cheng Li Yongsheng Huang Wenyu Mu Junbin Tan Jianlin Li Kai Liu Shijian Zheng Sheng Dai 《Journal of Energy Chemistry》 2025年第6期158-169,I0005,共13页
Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fati... Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fatigue and lattice oxygen loss.In this work,an epitaxial surface rock-salt nanolayer is successfully developed on the LiNi_(0.9)Co_(0.1)O_(2)sub-surface via heteroatom anchoring utilizing high-valence element molybdenum modification.This in-situ formed conformal buffer phase with a thickness of 1.2 nm effectively suppresses the continuous interphase side-reactions,and thus maintains the excellent structure integrity at high voltage.Furthermore,theoretical calculations indicate that the lattice oxygen reversibility in the anion framework of the optimized sample is obviously enhanced due to the higher content of O 2p states near the Fermi level than that of the pristine one.Meanwhile,the stronger Mo-O bond further reduces cell volume alteration,which improves the bulk structure stability of modified materials.Besides,the detailed charge compensation mechanism suggests that the average oxidation state of Ni is reduced,which induces more active Li+participating in the redox reactions,boosting the cell energy density.As a result,the uniquely designed cathode materials exhibit an extraordinary discharge capacity of 245.4 mAh g^(-1)at 0.1 C,remarkable rate performance of 169.3 mAh g^(-1)at 10 C at 4.5 V,and a high capacity retention of 70.5% after 1000 cycles in full cells at a high cut-off voltage of 4.4 V.This strategy provides an valuable insight into constructing distinctive heterostructure on highperformance Ni-rich layered cathodes for LIBs. 展开更多
关键词 Ni-rich layered oxides Rock-salt nanolayer Heteroatom anchoring Lattice oxygen reversibility Lithium-ion batteries
在线阅读 下载PDF
Effective regulation mechanisms of Fe-Ni(oxy)hydroxide:Ni-rich heteroatomic bonding(Ni–O–Fe–O–Ni)is essential
6
作者 Ruo-Yao Fan Hui-Ying Zhao +6 位作者 Zi-Yi Zhao Wen-Hui Hu Xin Liu Jian-Feng Yu Han Hu Yong-Ming Chai Bin Dong 《Nano Research》 SCIE EI CSCD 2023年第10期12026-12034,共9页
Although Fe-Ni combination performs well in transition metal-based oxygen evolution reaction(OER)electrocatalysts,there are lack of clear and general regulations mechanism to fully play the synergistic catalytic effec... Although Fe-Ni combination performs well in transition metal-based oxygen evolution reaction(OER)electrocatalysts,there are lack of clear and general regulations mechanism to fully play the synergistic catalytic effect.Here,we made the utmost of the interaction of Fe–Ni heteroatomic pair to obtain a highly active Fe-Ni(oxy)hydroxide catalytic layer on iron foam(IF)and nickel foam(NF)by in-situ electrochemical deposition and rapid surface reconstruction,which only required 327 and 351 mV overpotential to provide a large current of 1,000 mA·cm^(−2),respectively.The results confirm that the moderate Ni-rich heteroatomic bonding(Ni–O–Fe–O–Ni)formed by adjusting the Ni/Fe ratio on the catalyst surface is important to offer predominant OER performance.Fe is a key component that enhances OER activity of Ni(O)OH,but Fe-rich structural surface formed by Fe–O–Ni–O–Fe bonding is not ideal.Finally,the remarkable oxygen evolution performance of the prepared Ni2Fe(O)OH/IF and FeNi2(O)OH/NF can be chalked up to the optimized electronic structure of Fe–Ni heteroatomic bonding,the efficient gas spillover,the fast electron transport,and nanosheet clusters morphology.In summary,our work suggests a comprehensive regulation mechanism for the construction of efficient Fe-Ni(oxy)hydroxide catalytic layer on inexpensive,stable,and self-supporting metallic material surface. 展开更多
关键词 Fe-Ni(oxy)hydroxide oxygen evolution reaction(OER) heteroatomic bonding Ni-rich structure regulation mechanisms
原文传递
Advances in metal-free carbon catalysts for acetylene hydrochlorination:From heteroatom doping to intrinsic defects over the past decade
7
作者 Shuhao Wei Guojun Lan +3 位作者 Yiyang Qiu Di Lin Wei Kong Ying Li 《Chinese Journal of Catalysis》 2025年第3期8-43,共36页
The development of metal-free carbon catalysts has garnered significant attention as a promising approach to address the challenges of sustainable catalysis,particularly in the replacement of toxic and environmentally... The development of metal-free carbon catalysts has garnered significant attention as a promising approach to address the challenges of sustainable catalysis,particularly in the replacement of toxic and environmentally hazardous mercury-based systems for the coal-based PVC industry.Within a decade of development,the catalytic performance of carbon catalysts has been improved greatly and even shows superiorities over metal catalysts in some cases,which have demonstrated great potential as sustainable alternatives to mercury catalysts.This review provides a comprehensive summary of the recent advancements in carbon catalysts for acetylene hydrochlorination.It encompasses a wide range of aspects,including the identification of active sites from heteroatom doping to intrinsic carbon defects,the various synthetic strategies employed,the reaction and deactivation mechanisms of carbon catalysts,and the current insights into the key challenges that are encountered on the journey from laboratory research to scalable commercialization within the field of carbon catalysts.The review offers foundational insights and practical guidelines for designing green carbon catalysts systems,not only for acetylene hydrochlorination but also for other heterogeneous catalytic reactions. 展开更多
关键词 METAL-FREE Carbon catalyst Acetylene hydrochlorination Heteroatom doping Defect engineering
在线阅读 下载PDF
Triple-function Mn regulation of NiFe(oxy)hydroxide for oxygen evolution reaction
8
作者 Hui Wan Meng-Yuan Xie +10 位作者 Bo Li Jian-Hang Nie Tao Huang Lei Li Jing-Hui Shi Ming-Hua Xian Jia-Rong Huang Wangyu Hu Gui-Fang Huang Fei Gao Wei-Qing Huang 《Journal of Materials Science & Technology》 2025年第4期1-9,共9页
Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incor... Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incorporating heteroatom strategy via one-step hydrothermal approach to adjust more than one factor of Mn-doped NiFe(oxy)hydroxide(Mn-NiFeOOH/LDH)heterojunction.Mn doping regulates heterojunction morphology(reducing nanoparticles and becoming thinner and denser nanosheets),Ni/Fe ratio and valence states(Ni^(2+),Ni^(3+),and Ni^(3+Δ))of Ni ions.The former could effectively increase surface active sites,and the latter two reduce the content of Fe in the Mnx-NiFeOOH/LDH heterojunction,en-abling more Ni^(2+)convert to Ni^(3+/3+Δ)that have higher intrinsic OER activity.As a result,the first-rank Mn-NiFeOOH/LDH with ultra-low overpotential of 185 mV@20 mA cm^(-2) and 296 mV@500 mA cm^(-2),and the improved OER performance are outdo to those of commercial RuO_(2) catalyst for OER.Moreover,the Mn-NiFeOOH/LDH affords the earliest initial potential(1.392 V vs.RHE),corresponds to a recorded low overpotential(162 mV).Based on the density functional theory(DFT),Mn dopants can alter intermedi-ate adsorption energy and effectively decrease∗OOH’s energy barrier.This research exhibits a feasible strategy to design low cost electrocatalysts and provide new possibilities for future industrialization. 展开更多
关键词 Electrocatalysts Triple-function Heteroatoms adjusting DFT Oxygen evolution reaction
原文传递
“One stone, two birds”: Salt template enabling porosity engineering and single metal atom coordinating toward high-performance zinc-ion capacitors
9
作者 Chunliu Zhu Huanyu Liang +7 位作者 Ping Li Chenglong Qiu Jingyi Wu Jingwei Chen Weiqian Tian Yue Zhu Zhi Li Huanlei Wang 《Journal of Energy Chemistry》 2025年第1期637-645,共9页
Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost,high safety,and environmental friendliness.However,their progress has been hampered by low energy... Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost,high safety,and environmental friendliness.However,their progress has been hampered by low energy and power density,as well as unsatisfactory long-cycle stability,mainly due to the lack of suitable electrode materials.In this context,we have developed manganese single atoms implanted in nitrogen-doped porous carbon nanosheets (MnSAs/NCNs) using a metal salt template method as cathodes for ZIHCs.The metal salt serves a dual purpose in the synthesis process:It facilitates the uniform dispersion of Mn atoms within the carbon matrix and acts as an activating agent to create the porous structure.When applied in ZIHCs,the MnSAs/NCNs electrode demonstrates exceptional performance,including a high capacity of 203 m Ah g^(-1),an energy density of 138 Wh kg^(-1)at 68 W kg^(-1),and excellent cycle stability with 91%retention over 10,000 cycles.Theoretical calculations indicate that the introduced Mn atoms modulate the local charge distribution of carbon materials,thereby improving the electrochemical property.This work demonstrates the significant potential of carbon materials with metal atoms in zinc-ion hybrid capacitors,not only in enhancing electrochemical performance but also in providing new insights and methods for developing high-performance energy storage devices. 展开更多
关键词 Zinc ion hybrid capacitors Cathodes Carbon materials HETEROATOMS Single atoms
在线阅读 下载PDF
Molecular engineering of dibenzo-heterocyclic core based hole-transporting materials for perovskite solar cells
10
作者 Yajie Yang Mengde Zhai +5 位作者 Haoxin Wang Cheng Chen Ziyang Xia Chengyang Liu Yi Tian Ming Cheng 《Chinese Chemical Letters》 2025年第5期308-313,共6页
Heterocyclic compounds play an important role in organic hole transport materials(HTMs)for perovskite solar cells(PSCs).Herein,a series of linear D-π-D HTMs(O-CBz,S-CBz,SO_(2)-CBz)with different dibenzoheterocycles c... Heterocyclic compounds play an important role in organic hole transport materials(HTMs)for perovskite solar cells(PSCs).Herein,a series of linear D-π-D HTMs(O-CBz,S-CBz,SO_(2)-CBz)with different dibenzoheterocycles core(dibenzofuran,dibenzothiophene,dibenzothiophene sulfone)were designed and synthesized,and their applications in PSCs were investigated.The intrinsic properties(CV,UV-vis,hole mobility and conductivity)were systematically investigated,demonstrating that all three materials are suitable HTMs for planar n-i-p type PSCs.Benefiting from the excellent hole mobility and conductivity,good film forming ability,and outstanding charge extraction and transport capability of S-CBz,FAPbI_(3)-based PSCs using S-CBz as HTM achieved a PCE of 25.0%,which is superior to that of Spiro-OMeTAD-based PSCs fabricated under the same conditions(23.9%).Furthermore,due to the interaction between S and Pb^(2+),SCBz-based PSC devices exhibited improved stability.This work demonstrates that dibenzothiophene-based architectures are promising candidates for high-performance HTMs in perovskite solar cell architectures. 展开更多
关键词 Heteroatom effect Dibenzo-heterocycle Hole transport material Perovskite solar cells Passivation effect
原文传递
Promoting the generation of active sites through “Co-O-Ru” electron transport bridges for efficient water splitting
11
作者 Zuyou Song Yong Jiang +5 位作者 Qiao Gou Yini Mao Yimin Jiang Wei Shen Ming Li Rongxing He 《Chinese Chemical Letters》 2025年第4期530-536,共7页
Exploring the intrinsic reasons for the dynamic reconstruction of catalysts during electrocatalytic reactions and their impact on activity enhancement still face severe challenges. Herein, the bifunctional catalyst Ru... Exploring the intrinsic reasons for the dynamic reconstruction of catalysts during electrocatalytic reactions and their impact on activity enhancement still face severe challenges. Herein, the bifunctional catalyst Ru/V-Co O/CP with doping strategy and heterostructure was synthesized for overall water splitting.The Ru/V-Co O exhibits excellent activity for HER and OER with low overpotentials of 49, 147 m V at a current density of 10 m A/cm^(2) in 1.0 mol/L KOH, respectively. The assembled electrolytic cell just needs voltages of 1.47 and 1.71 V to achieve 10 and 350 m A/cm^(2)current density under the same conditions and delivers an outstanding stability for over 100 h, which is far superior to the commercial Ru O_(2)||Pt/C cell. Experimental and theoretical results indicate that the doping of V species and the formation of heterostructures lead to charge redistribution. More importantly, the leaching of V species induces electron transfer form Co to O and then Ru through the Co-O-Ru electron bridge, optimizes the adsorption strength of the key intermediate, thereby reducing the free energy barrier of the rate-determining step and improving catalytic activity. This work proposes an effective strategy of using cation dissolution to induce electron transfer through the electron bridge and thus regulate the electronic structure of catalysts,providing new ideas for the design and development of efficient and stable electrocatalysts. 展开更多
关键词 Heteroatom doping Reconstruction V leaching Electron transfer Overall water splitting
原文传递
Template-oriented synthesis of boron/nitrogen-rich carbon nanoflake superstructure for high-performance Zn-ion hybrid capacitors
12
作者 Chunjiang Jin Fengjiao Guo +4 位作者 Hongyu Mi Nianjun Yang Congcong Yang Xiaqing Chang Jieshan Qiu 《Carbon Energy》 2025年第3期76-90,共15页
The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a ... The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices. 展开更多
关键词 active site density carbon superstructure heteroatom doping MOF template Zn-ion hybrid capacitor
在线阅读 下载PDF
P-tuned FeN_(2)binuclear sites for boosted CO_(2)electro-reduction
13
作者 Cao Guo Sanshuang Gao +5 位作者 Jun Li Menglin Zhou Abdukader Abdukayum Qingquan Kong Yingtang Zhou Guangzhi Hu 《Journal of Energy Chemistry》 2025年第2期816-824,I0018,共10页
The recycling of CO_(2)through electrochemical processes offers a promising solution for alleviating the greenhouse effect;however,the activation of CO_(2)and desorption of^(*)CO in electrocatalytic CO_(2)reduction(EC... The recycling of CO_(2)through electrochemical processes offers a promising solution for alleviating the greenhouse effect;however,the activation of CO_(2)and desorption of^(*)CO in electrocatalytic CO_(2)reduction(ECR)frequently encounter high energy barriers and competitive hydrogen evolution reactions(HERs),which are urgent problems that need to be addressed.In this study,a catalyst(P100-Fe-N/C)with homogeneous P-tuned FeN_(2)binuclear sites(N_(2)PFe-FePN_(2))was successfully synthesised,demonstrating satisfactory performance in the ECR to CO.P100-Fe-N/C attains a peak FECOof 98.01%and a normalized TOF of 664.7 h-1at-0.7 VRHE,surpassing the performance of the Fe binuclear catalyst without P and singleatoms catalysts.In the MEA cell,a FECOexceeding 90%can still be achieved.Density functional theory analysis indicates that the asymmetric coordination configuration induced by the incorporation of P facilitates a reduction in the system's energy.The modulation of P results in the d-band centre of the catalyst being positioned closer to the Fermi level,which facilitates the interaction of the catalyst with CO_(2),allowing more electrons to be injected into the CO_(2)molecule at the Fe binuclear sites and inhibiting the HER.The P-tuned FeN_(2)binuclear sites effectively lower the^(*)CO desorption barrier. 展开更多
关键词 Electrocatalysis Diatomic catalyst Heteroatom doping CO_(2)reduction reaction DFT calculation
在线阅读 下载PDF
Proximity defect inductive effect of atomic Ni-N_(3) sites by Te atoms doping for efficient oxygen reduction and hydrogen evolution
14
作者 Min Li Xiuhui Zheng +3 位作者 Han Guo Xiang Feng Yunqi Liu Yuan Pan 《Journal of Energy Chemistry》 2025年第7期446-454,共9页
The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challen... The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challenging.Herein,N-doped carbon(N-C)anchored atomically dispersed Ni-N_(3)site with proximity defects(Ni-N_(3)D)induced by Te atoms doping is reported.Benefitting from the inductive effect of proximity defect,the Ni-N_(3)D/Te-N-C catalyst performs excellent ORR and HER performance in alkaline and acid condition.Both in situ characterization and theoretical calculation reveal that the existence of proximity defect effect is conducive to lower rate-determining-step energy barrier of ORR and HER,thus accelerating the multielectron reaction kinetics.This work paves a novel strategy for constructing highactivity bifunctional SACs by defect engineering for development of sustainable energy. 展开更多
关键词 Proximity defect engineering Single atom catalyst Heteroatom doping Oxygen reduction reaction Hydrogen evolution reaction
在线阅读 下载PDF
Regulating the local environment of Ni single-atom catalysts with heteroatoms for efficient CO_(2) electroreduction
15
作者 Gang Wang Imran Muhammad +2 位作者 Hui-Min Yan Jun Li Yang-Gang Wang 《Chinese Journal of Catalysis》 2025年第7期120-129,共10页
The Ni single-atom catalyst dispersed on nitrogen doped graphene support has attracted much interest due to the high selectivity in electro-catalyzing CO_(2)reduction to CO,yet the chemical inertness of the metal cent... The Ni single-atom catalyst dispersed on nitrogen doped graphene support has attracted much interest due to the high selectivity in electro-catalyzing CO_(2)reduction to CO,yet the chemical inertness of the metal center renders it to exhibit electrochemical activity only under high overpotentials.Herein,we report P-and S-doped Ni single-atom catalysts,i.e.symmetric Ni_(1)/PN_(4)and asymmetric Ni1/SN_(3)C can exhibit high catalytic activity of CO_(2)reduction with stable potential windows.It is revealed that the key intermediate*COOH in CO_(2)electroreduction is stabilized by heteroatom doping,which stems from the upward shift of the axial d_(z2)orbital of the active metal Ni atom.Furthermore,we investigate the potential-dependent free energetics and dynamic properties at the electrochemical interface on the Ni1/SN3C catalyst using ab initio molecular dynamics simulations with a full explicit solvent model.Based on the potential-dependent microkinetic model,we predict that S-atom doped Ni SAC shifts the onset potential of CO_(2)electroreduction from–0.88 to–0.80 V vs.RHE,exhibiting better activity.Overall,this work provides an in-depth understanding of structure-activity relationships and atomic-level electrochemical interfaces of catalytic systems,and offers insights into the rational design of heteroatom-doped catalysts for targeted catalysis. 展开更多
关键词 Ni single-atom catalyst Heteroatom doping CO_(2)electroreduction Ab initio molecular dynamics
在线阅读 下载PDF
Fluorinated N,P co-doped biomass carbon with high-rate performance as cathode material for lithium/fluorinated carbon battery
16
作者 Ke Yan Yan Zou +5 位作者 Liang-Xue Bao Qi Xia Ling-Yi Meng Hai-Chen Lin Hui-Xin Chen Hong-Jun Yue 《Rare Metals》 2025年第1期110-120,共11页
Lithium/fluorinated carbon(Li/CF_(x))batteries are greatly limited in their applications mostly due to poor rate performances.In this study,N,P co-doped biomass carbon was synthesized using melamine and phytic acid as... Lithium/fluorinated carbon(Li/CF_(x))batteries are greatly limited in their applications mostly due to poor rate performances.In this study,N,P co-doped biomass carbon was synthesized using melamine and phytic acid as doping sources,and the resulting product was then utilized as a precursor for CF_(x).The resulting fluorinated biomass carbon has a high degree of fluorination,exceeding the specific capacity of commercial fluorinated graphite while also demonstrating exceptional performance at high discharge rates.During the fluorination process,N,P-containing functional groups were removed from the crystalline lattice in the basal plane.This facilitates the formation of a defect-rich carbon matrix,enhancing the F/C ratio by improving the fluorinated active sites and obtaining more highly active semi-ionic bonds.Additionally,the abundant defects and porous structure promote Li^(+)diffusion.Density functional theory calculations indicated that doping modification effectively reduces the energy barrier for Li+migration,enhancing Li+transport efficiency.The prepared CF_(x)delivers material with a maximum specific capacity of 919 mAh·g^(-1),while maintaining a specific capacity of 702 mAh·g^(-1)at a high discharge current density of 20C(with a capacity retention rate of 76.4%).In this study,fluorinated N,P co-doped biomass carbon,exhibiting ultrahigh capacity and high-rate performance,was prepared for the first time,which can potentially advance the commercialization of CF_(x). 展开更多
关键词 Li/CF_(x)primary batteries Biomass carbon Heteroatom doping High performance
原文传递
Single-Point Linkage Engineering in Conjugated Phthalocyanine-Based Covalent Organic Frameworks for Electrochemical CO_(2)Reduction
17
作者 Wenchang Chen Yi Zhang +2 位作者 Mingyu Yang Chao Yang Zheng Meng 《Nano-Micro Letters》 2025年第10期551-564,共14页
The utilization of covalent organic frameworks(COFs)holds great potential for achieving tailorable tuning of catalytic performance through bottom-up modulation of the reticular structure.In this work,we show that a si... The utilization of covalent organic frameworks(COFs)holds great potential for achieving tailorable tuning of catalytic performance through bottom-up modulation of the reticular structure.In this work,we show that a single-point structural alteration in the linkage within a nickel phthalocyanine(NiPc)-based series effectively modulates the catalytic performance of the COFs in electrochemical CO_(2)reduction reaction(CO_(2)RR).A Ni Pc-based COF series with three members which possess the same Ni Pc unit but different linkages,including piperazine,dioxin,and dithiine,have been constructed by nucleophilic aromatic substitution reaction between octafluorophthalocyanine nickel and tetrasubstituted benzene linkers with different bridging groups.Among these COFs,the dioxin-linked COF showed the best activity of CO_(2)RR with a current density of CO(j_(CO))=-27.99 m A cm^(-2)at-1.0 V(versus reversible hydrogen electrode,RHE),while the COF with piperazine linkage demonstrated an excellent selectivity of Faradaic efficiency for CO(FECO)up to 90.7%at a pretty low overpotential of 0.39 V.In addition,both a high FECO value close to 100%and a reasonable jCO of-8.20 m A cm^(-2)at the potential of-0.8 V(versus RHE)were obtained by the piperazine-linked COF,making it one of the most competitive candidates among COF-based materials.Mechanistic studies exhibited that single-point structural alteration could tailor the electron density in Ni sites and alter the interaction between the active sites and the key intermediates adsorbed and desorbed,thereby tuning the electrochemical performance during CO_(2)RR process. 展开更多
关键词 Conjugated covalent organic frameworks Linkage engineering Single heteroatom tuning CO_(2)electroreduction
在线阅读 下载PDF
Constructing globally consecutive 3D conductive network using P-doped biochar cotton fiber for superior performance of silicon-based anodes 被引量:3
18
作者 Jun Cao Jianhong Gao +6 位作者 Kun Wang Zhuoying Wu Xinxin Zhu Han Li Min Ling Chengdu Liang Jun Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第6期181-191,共11页
The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by... The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by compositing silicon and carbon materials has been employed to tackle the above challenges,however,the exorbitant costs and the uncertainty of the conductive structure persist,leaving ample room for improvement.Herein,silicon nanoparticles were innovatively composited with eco-friendly biochar sourced from cotton to fabricate a 3D globally consecutive conductive network.The network serves a dual purpose:enhancing overall electrode conductivity and serving as a scaffold to maintain electrode integrity.The conductivity of the network was further augmented by introducing P-doping at the optimum doping temperature of 350℃.Unlike the local conductive sites formed by the mere mixing of silicon and conductive agents,the consecutive network can affirm the improvement of the conductivity at a macro level.Moreover,first-principle calculations further validated that the rapid diffusion of Li^(+)is attributed to the tailored electronic microstructure and charge rearrangement of the fiber.The prepared consecutive conductive Si@P-doped carbonized cotton fiber anode outperforms the inconsecutive Si@Graphite anode in both cycling performance(capacity retention of 1777.15 mAh g^(-1) vs.682.56 mAh g^(-1) after 150 cycles at 0.3 C)and rate performance(1244.24 mAh g^(-1) vs.370.28 mAh g^(-1) at 2.0 C).The findings of this study may open up new avenues for the development of globally interconnected conductive networks in Si-based anodes,thereby enabling the fabrication of high-performance LIBs. 展开更多
关键词 3D conductive network Biochar carbon-silicon anode Heteroatoms doping strategy DFT calculation Lithium-ion battery
原文传递
Local coordination and electronic interactions of Pd/MXene via dual‐atom codoping with superior durability for efficient electrocatalytic ethanol oxidation 被引量:1
19
作者 Zhangxin Chen Fan Jing +7 位作者 Minghui Luo Xiaohui Wu Haichang Fu Shengwei Xiao Binbin Yu Dan Chen Xianqiang Xiong Yanxian Jin 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期166-177,共12页
Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promisin... Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies. 展开更多
关键词 DURABILITY electronic interactions ethanol oxidation heteroatom codoping Pd/MXene
在线阅读 下载PDF
Flame-assisted ultrafast synthesis of functionalized carbon nanosheets for high-performance sodium storage 被引量:1
20
作者 Chen Chen Dong Yan +9 位作者 Yew Von Lim Lei Liu Xue Liang Li Junjie Chen Tian Chen Li Youyu Zhu Jiangtao Cai Ying Huang Yating Zhang Hui Ying Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期123-133,共11页
The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large en... The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large energy consumption,resulting in low throughputs and efficiency.In our contribution,a novel synthesis method is proposed,involving the formation of HC nanosheets(NS-CNs)within minutes by creating an anoxic environment through flame combustion and further introducing sulfur and nitrogen sources to achieve heteroatom doping.The effect of heterogeneous element doping on the microstructure of HC is quantitatively analyzed by high-resolution transmission electron microscopy and image processing technology.Combined with density functional theory calculation,it is verified that the functionalized HC exhibits stronger Na^(+)adsorption ability,electron gain ability,and Na^(+) migration ability.As a result,NS-CNs as SIB anodes provide an ultrahigh reversible capacity of 542.7mAh g^(-1) at 0.1Ag^(-1),and excellent rate performance with a reversible capacity of 236.4mAh g^(-1) at 2Ag^(-1) after 1200 cycles.Furthermore,full cell assembled with NS-CNs as the can present 230mAh g^(-1) at 0.5Ag^(-1) after 150 cycles.Finally,in/ex situ techniques confirm that the excellent sodium storage properties of NS-CNs are due to the construction of abundant active sites based on the novel synthesis method for realizing the reversible adsorption of Na^(+).This work provides a novel strategy to develop novel carbons and gives deep insights for the further investigation of facile preparation methods to develop high-performance carbon anodes for alkali-ion batteries. 展开更多
关键词 carbon nanosheets heteroatom doping sodium-ion battery sustainable materials
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部