在Road to Heaven:Encounters with Chinese Hermits一书中,比尔·波特对中华传统文化和中国典籍相关文字的翻译俯拾即是,此外还包含作者对中国隐士文化的看法和评价,是典型的无本译写文本。文章以Road to Heaven:Encounters with C...在Road to Heaven:Encounters with Chinese Hermits一书中,比尔·波特对中华传统文化和中国典籍相关文字的翻译俯拾即是,此外还包含作者对中国隐士文化的看法和评价,是典型的无本译写文本。文章以Road to Heaven:Encounters with Chinese Hermits为研究对象,采用无本译写特有的底本追踪方法,分析书中译的元素、译写关系以及无本译写所展现的中国文化中的隐士精神。首先,本文从中国典籍、民间传说、历史事件、中国传统价值观念、寻访见闻五个方面分析书中译的元素,其次探讨译写关系,最后从三个层面分析该书无本译写展现的隐士精神。研究发现:译写关系具体表现为互释互构、互相拓展的渐变连续体关系;比尔·波特对中国文化存在误读、翻译不准确、对某一特定文化的了解不全面等现象。展开更多
高耸结构P-Δ效应的传统分析方法一般难以考虑时变轴力作用,有可能会低估P-Δ效应对结构安全性的影响.本文应用求积单元法(weak form quadrature element method,QEM),针对分布质量结构体系和含有集中质量的结构体系分别建立Hermite型...高耸结构P-Δ效应的传统分析方法一般难以考虑时变轴力作用,有可能会低估P-Δ效应对结构安全性的影响.本文应用求积单元法(weak form quadrature element method,QEM),针对分布质量结构体系和含有集中质量的结构体系分别建立Hermite型求积单元模型,发展了一种高耸结构P-Δ效应高阶精确分析方法.该方法能够应用于具有突变质量的结构体系,可处理任意轴向荷载引起的动力P-Δ效应问题,无需迭代计算即可获得高精度的P-Δ效应解答,同时能准确地揭示竖向荷载以及时变轴力对高耸结构特性的影响规律.通过对3个不同类型案例的比较分析,验证了本文方法的可行性和准确性.数值分析结果表明,本文方法可以实现高精度的P-Δ效应分析,对于质量均匀分布和含有集中质量的结构体系仅需使用一个求积单元即可获得非常精确的动态响应结果.展开更多
A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this wor...A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.展开更多
在本文中,我们提出了一种修正的高阶有限差分Hermite WENO (HWENO)方法,用于求解均匀网格中的一维和二维对流扩散方程。与求解双曲守恒律的有限差分HWENO方法不同,我们扩展了该方法以求解对流扩散方程。其关键不是使用通量分裂技术,而...在本文中,我们提出了一种修正的高阶有限差分Hermite WENO (HWENO)方法,用于求解均匀网格中的一维和二维对流扩散方程。与求解双曲守恒律的有限差分HWENO方法不同,我们扩展了该方法以求解对流扩散方程。其关键不是使用通量分裂技术,而是使用添加高阶修正项的想法来提高数值通量的精度。此外,在重构过程中,我们不在单元界面上使用函数及其导数值,而是使用解及其导数的点值直接插值。使用Hermite插值计算高阶导数和扩散项,以保持方法的紧凑性。这种方法的一个优点是数值通量的重构过程可以采用任意单调通量。另一个优点是,修改后的方法仍然具有HWENO方案的紧性,并且在相同的网格上也具有更小的数值误差和更好的分辨率。通过一维和二维问题的数值算例验证了所提方法的有效性和稳定性。In this paper, we propose a modified high-order finite difference Hermite WENO (HWENO) method for solving one and two dimensions convection-diffusion equations in uniform meshes. Unlike the finite difference HWENO method for solving hyperbolic conservation laws, we extend the method to solve convection-diffusion equations. The key is not to use the flux splitting technique, but to use the idea of adding higher-order corrections to improve the precision of the numerical flux. Moreover, in the reconstruction process, we do not use the function and its derivative values on the cell interface, but use the direct interpolation of the point values of the solution and its derivatives. The higher derivatives and diffusion term are computed using Hermite interpolation to maintain the compactness of the method. An advantage of this method is that the reconstruction process of the numerical flux can adopt any monotone flux. Another advantage is that the modified method still has the compactness of the HWENO schemes, and also has smaller numerical errors and better resolution on the same mesh. The validity and stability of the proposed method are verified by numerical examples of one and two dimensions problems.展开更多
针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平...针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平均法,有效改善LMD收敛慢、受平滑长度影响的弊端。为避免延拓长度不够而导致的“延拓失败”情形,在镜像延拓法的基础上结合“奇延拓”方法提出改进镜像延拓法。针对“直接法”求频率存在“毛刺现象”的弊端,文中改用希尔伯特变换(Hilbert Transform,HT)求取瞬时频率。最后,将MLMD分别应用于单一扰动信号与复合谐波信号的检测,相较传统的经验模态分解方法(Empirical Mode Decomposition,EMD),MLMD方法可有效抑制“端点效应”,同时能更准确的定位扰动信号的起止时刻,并且对高次谐波信号有更好的提取能力。展开更多
文摘在Road to Heaven:Encounters with Chinese Hermits一书中,比尔·波特对中华传统文化和中国典籍相关文字的翻译俯拾即是,此外还包含作者对中国隐士文化的看法和评价,是典型的无本译写文本。文章以Road to Heaven:Encounters with Chinese Hermits为研究对象,采用无本译写特有的底本追踪方法,分析书中译的元素、译写关系以及无本译写所展现的中国文化中的隐士精神。首先,本文从中国典籍、民间传说、历史事件、中国传统价值观念、寻访见闻五个方面分析书中译的元素,其次探讨译写关系,最后从三个层面分析该书无本译写展现的隐士精神。研究发现:译写关系具体表现为互释互构、互相拓展的渐变连续体关系;比尔·波特对中国文化存在误读、翻译不准确、对某一特定文化的了解不全面等现象。
文摘高耸结构P-Δ效应的传统分析方法一般难以考虑时变轴力作用,有可能会低估P-Δ效应对结构安全性的影响.本文应用求积单元法(weak form quadrature element method,QEM),针对分布质量结构体系和含有集中质量的结构体系分别建立Hermite型求积单元模型,发展了一种高耸结构P-Δ效应高阶精确分析方法.该方法能够应用于具有突变质量的结构体系,可处理任意轴向荷载引起的动力P-Δ效应问题,无需迭代计算即可获得高精度的P-Δ效应解答,同时能准确地揭示竖向荷载以及时变轴力对高耸结构特性的影响规律.通过对3个不同类型案例的比较分析,验证了本文方法的可行性和准确性.数值分析结果表明,本文方法可以实现高精度的P-Δ效应分析,对于质量均匀分布和含有集中质量的结构体系仅需使用一个求积单元即可获得非常精确的动态响应结果.
文摘A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.
文摘在本文中,我们提出了一种修正的高阶有限差分Hermite WENO (HWENO)方法,用于求解均匀网格中的一维和二维对流扩散方程。与求解双曲守恒律的有限差分HWENO方法不同,我们扩展了该方法以求解对流扩散方程。其关键不是使用通量分裂技术,而是使用添加高阶修正项的想法来提高数值通量的精度。此外,在重构过程中,我们不在单元界面上使用函数及其导数值,而是使用解及其导数的点值直接插值。使用Hermite插值计算高阶导数和扩散项,以保持方法的紧凑性。这种方法的一个优点是数值通量的重构过程可以采用任意单调通量。另一个优点是,修改后的方法仍然具有HWENO方案的紧性,并且在相同的网格上也具有更小的数值误差和更好的分辨率。通过一维和二维问题的数值算例验证了所提方法的有效性和稳定性。In this paper, we propose a modified high-order finite difference Hermite WENO (HWENO) method for solving one and two dimensions convection-diffusion equations in uniform meshes. Unlike the finite difference HWENO method for solving hyperbolic conservation laws, we extend the method to solve convection-diffusion equations. The key is not to use the flux splitting technique, but to use the idea of adding higher-order corrections to improve the precision of the numerical flux. Moreover, in the reconstruction process, we do not use the function and its derivative values on the cell interface, but use the direct interpolation of the point values of the solution and its derivatives. The higher derivatives and diffusion term are computed using Hermite interpolation to maintain the compactness of the method. An advantage of this method is that the reconstruction process of the numerical flux can adopt any monotone flux. Another advantage is that the modified method still has the compactness of the HWENO schemes, and also has smaller numerical errors and better resolution on the same mesh. The validity and stability of the proposed method are verified by numerical examples of one and two dimensions problems.