Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible...Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%.展开更多
The inflammatory response is a crucial physiological process that can lead to tissue damage and is considered a causative factor for various chronic diseases,such as rheumatoid arthritis.Recent research has focused on...The inflammatory response is a crucial physiological process that can lead to tissue damage and is considered a causative factor for various chronic diseases,such as rheumatoid arthritis.Recent research has focused on exploring valuable nutrients derived from Cannabis sativa L.(hemp)seeds,particularly hemp seed proteins.Therefore,this study aimed to investigate the release of anti-inflammatory peptides from Lactobacillus paraplantarum-fermented hemp seed proteins.To confirm the complete hydrolysis of hemp seed proteins during the fermentation process,sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE)was employed.Further,the isolation and purification of peptides were achieved through ultrafiltration.The identity of peptides was nextly established using ultra-high performance liquid chromatography coupled with hybrid quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS).The results revealed a total of 39 identified peptides in fermented hemp seeds,with 9 peptides selected based on their relative quantity.Notably,AAELIGVP(P1),AAVPYPQ(P2),VFPEVAP(P4),DVIGVPLG(P6),and PVPKVL(P9)demonstrated strong anti-inflammatory abilities in lipopolysaccharide(LPS)-induced RAW264.7 macrophage cells.Molecular docking was used to understand the potential anti-inflammatory mechanism of these 5 peptides,and in silico results indicated that P1,P2,P4,P6,and P9 could bind to the active sites of toll-like receptor 4(TLR-4),nuclear factor-κB(NF-κB),and inhibitor of NF-κB kinase(IKK)with higher binding energies.Overall,these findings indicate that hemp seeds have potential to be a source of bioactive peptides for functional foods with anti-inflammatory properties.展开更多
The traditional nutritional and medical hemp(Cannabis sativa L.)seed protein were explored for the discovery and directional preparation of new xanthine oxidase inhibitory(XOI)peptides by structure-based virtual scree...The traditional nutritional and medical hemp(Cannabis sativa L.)seed protein were explored for the discovery and directional preparation of new xanthine oxidase inhibitory(XOI)peptides by structure-based virtual screening,compound synthesis,in vitro bioassay and proteolysis.Six subtypes of hemp seed edestin and albumin were in silico hydrolyzed by 29 proteases,and 192 encrypted bioactive peptides were screened out.Six peptides showed to be XOI peptides,of which four(about 67%)were released by elastase hydrolysis.The peptide DDNPRRFY displayed the highest XOI activity(IC50=(2.10±0.06)mg/mL),acting as a mixed inhibitor.The pancreatic elastase directionally prepared XOI hemp seed protein hydrolysates,from which 6 high-abundance XOI peptides encrypted 3 virtually-screened ones including the DDNPRRFY.The novel outstanding hemp seed protein-derived XOI peptides and their virtual screening and directed preparation methods provide a promising and applicable approach to conveniently and efficiently explore food-derived bioactive peptides.展开更多
This study explored the thermo-chemical properties of industrial hemp hurd with different provenances,maturity stages,and retting protocols.The findings were then compared to hemp hurd used in the fabrication of citri...This study explored the thermo-chemical properties of industrial hemp hurd with different provenances,maturity stages,and retting protocols.The findings were then compared to hemp hurd used in the fabrication of citric acid-bonded ultra-low-density hemp hurd particleboard.Pyrolysis-gas chromatography-mass spectrometry(Py-GC/MS),Fourier-transform infrared spectroscopy(FTIR),and thermogravimetric analysis(TGA)were employed to document the variability of the hurd and comprehend the potential impact on biobased composite applications.The choice of cultivar,maturity stage,and processing modality significantly influenced the chemical composition,presence of functional groups,and thermal stability of the hurd.Py-GC/MS revealed substantial variations in the lignin-to-carbohydrate(L/C)ratio,along with the absence of fatty acids in certain cultivars.While FTIR signals confirmed consistent functional groups,differences in peak intensities were indicative of carbohydrate variations associated with maturity and retting duration,impacting the availability of hydroxyl groups for,i.e.,interparticle bonding in citric acid-based bio-composites.Furthermore,it was observed that shorter retting durations initially enhanced the thermal resistance,but prolonged retting led to accelerated degradation,significantly reducing the hurd’s residual mass.The findings indicated notable differences among the samples,emphasizing the importance of investigating variables such as provenance/cultivar,maturity,and processing modality.This assessment is essential to ensure effective agronomic practices that align the raw material characteristics with the specific requirements of intended applications,such as the fabrication of biobased hemp hurd composites.展开更多
This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials(PCMs)and bio-based materials,specifically h...This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials(PCMs)and bio-based materials,specifically hemp wool and wood wool.Experimental tests using the heat flow method(HFM),and numerical simulations with ANSYS Fluent software were conducted to assess the dynamic thermal distribution and fluid-mechanical aspects of phase change materials(PCMs)within composite walls.The results demonstrate a notable reduction in peak indoor temperatures,achieving a 58%reduction with hemp wool with a close 40%reduction with wood wool when combined with PCMs.Fluid-mechanical analysis indicates that PCMs act as efficient indoor temperature regulators by storing excess heat during hot periods and releasing it later during phase transitions.Furthermore,the homogeneous distribution of the liquid fraction and natural convection during phase change contribute significantly to the improvement in heat transfer rates,resulting in a 96%reduction compared to hemp wool and wood wool without PCMs.展开更多
The internodes of the new cultivar Long-ma No.1 of Cannabis sativa L.(Industrial hemp) were used as explants for tissue culture. The paper studied the key factors of industrial hemp tissue culture, such as the physi...The internodes of the new cultivar Long-ma No.1 of Cannabis sativa L.(Industrial hemp) were used as explants for tissue culture. The paper studied the key factors of industrial hemp tissue culture, such as the physiological state of aseptic seedlings, the selection and concentration of plant growth regulators and so on.Hemp seed disinfection used 75% alcohol for 2 min and sterilized in 1‰ Hg Cl2 for 5min. The best combinations of plant growth regulators were 1.0 mg/L 6-BA and 0.5mg/L NAA for the induction of callus, and the best combinations of hormones were1.0 mg/L KT and 0.5 mg/L NAA for differentiation rate of adventitious bud.展开更多
文摘Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%.
基金the 4^(th) Brain Korea(BK)21 Plus Project(4299990913942)financed by the Korean Government,Republic of Korea.
文摘The inflammatory response is a crucial physiological process that can lead to tissue damage and is considered a causative factor for various chronic diseases,such as rheumatoid arthritis.Recent research has focused on exploring valuable nutrients derived from Cannabis sativa L.(hemp)seeds,particularly hemp seed proteins.Therefore,this study aimed to investigate the release of anti-inflammatory peptides from Lactobacillus paraplantarum-fermented hemp seed proteins.To confirm the complete hydrolysis of hemp seed proteins during the fermentation process,sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE)was employed.Further,the isolation and purification of peptides were achieved through ultrafiltration.The identity of peptides was nextly established using ultra-high performance liquid chromatography coupled with hybrid quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS).The results revealed a total of 39 identified peptides in fermented hemp seeds,with 9 peptides selected based on their relative quantity.Notably,AAELIGVP(P1),AAVPYPQ(P2),VFPEVAP(P4),DVIGVPLG(P6),and PVPKVL(P9)demonstrated strong anti-inflammatory abilities in lipopolysaccharide(LPS)-induced RAW264.7 macrophage cells.Molecular docking was used to understand the potential anti-inflammatory mechanism of these 5 peptides,and in silico results indicated that P1,P2,P4,P6,and P9 could bind to the active sites of toll-like receptor 4(TLR-4),nuclear factor-κB(NF-κB),and inhibitor of NF-κB kinase(IKK)with higher binding energies.Overall,these findings indicate that hemp seeds have potential to be a source of bioactive peptides for functional foods with anti-inflammatory properties.
基金funded by National Natural Science Foundation of China(21868003)Bama County Program for Talents in Science and Technology(BaRenKe20210045).
文摘The traditional nutritional and medical hemp(Cannabis sativa L.)seed protein were explored for the discovery and directional preparation of new xanthine oxidase inhibitory(XOI)peptides by structure-based virtual screening,compound synthesis,in vitro bioassay and proteolysis.Six subtypes of hemp seed edestin and albumin were in silico hydrolyzed by 29 proteases,and 192 encrypted bioactive peptides were screened out.Six peptides showed to be XOI peptides,of which four(about 67%)were released by elastase hydrolysis.The peptide DDNPRRFY displayed the highest XOI activity(IC50=(2.10±0.06)mg/mL),acting as a mixed inhibitor.The pancreatic elastase directionally prepared XOI hemp seed protein hydrolysates,from which 6 high-abundance XOI peptides encrypted 3 virtually-screened ones including the DDNPRRFY.The novel outstanding hemp seed protein-derived XOI peptides and their virtual screening and directed preparation methods provide a promising and applicable approach to conveniently and efficiently explore food-derived bioactive peptides.
文摘This study explored the thermo-chemical properties of industrial hemp hurd with different provenances,maturity stages,and retting protocols.The findings were then compared to hemp hurd used in the fabrication of citric acid-bonded ultra-low-density hemp hurd particleboard.Pyrolysis-gas chromatography-mass spectrometry(Py-GC/MS),Fourier-transform infrared spectroscopy(FTIR),and thermogravimetric analysis(TGA)were employed to document the variability of the hurd and comprehend the potential impact on biobased composite applications.The choice of cultivar,maturity stage,and processing modality significantly influenced the chemical composition,presence of functional groups,and thermal stability of the hurd.Py-GC/MS revealed substantial variations in the lignin-to-carbohydrate(L/C)ratio,along with the absence of fatty acids in certain cultivars.While FTIR signals confirmed consistent functional groups,differences in peak intensities were indicative of carbohydrate variations associated with maturity and retting duration,impacting the availability of hydroxyl groups for,i.e.,interparticle bonding in citric acid-based bio-composites.Furthermore,it was observed that shorter retting durations initially enhanced the thermal resistance,but prolonged retting led to accelerated degradation,significantly reducing the hurd’s residual mass.The findings indicated notable differences among the samples,emphasizing the importance of investigating variables such as provenance/cultivar,maturity,and processing modality.This assessment is essential to ensure effective agronomic practices that align the raw material characteristics with the specific requirements of intended applications,such as the fabrication of biobased hemp hurd composites.
文摘This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials(PCMs)and bio-based materials,specifically hemp wool and wood wool.Experimental tests using the heat flow method(HFM),and numerical simulations with ANSYS Fluent software were conducted to assess the dynamic thermal distribution and fluid-mechanical aspects of phase change materials(PCMs)within composite walls.The results demonstrate a notable reduction in peak indoor temperatures,achieving a 58%reduction with hemp wool with a close 40%reduction with wood wool when combined with PCMs.Fluid-mechanical analysis indicates that PCMs act as efficient indoor temperature regulators by storing excess heat during hot periods and releasing it later during phase transitions.Furthermore,the homogeneous distribution of the liquid fraction and natural convection during phase change contribute significantly to the improvement in heat transfer rates,resulting in a 96%reduction compared to hemp wool and wood wool without PCMs.
基金Supported by Heilongjiang Academy of Sciences Youth Innovation Fund~~
文摘The internodes of the new cultivar Long-ma No.1 of Cannabis sativa L.(Industrial hemp) were used as explants for tissue culture. The paper studied the key factors of industrial hemp tissue culture, such as the physiological state of aseptic seedlings, the selection and concentration of plant growth regulators and so on.Hemp seed disinfection used 75% alcohol for 2 min and sterilized in 1‰ Hg Cl2 for 5min. The best combinations of plant growth regulators were 1.0 mg/L 6-BA and 0.5mg/L NAA for the induction of callus, and the best combinations of hormones were1.0 mg/L KT and 0.5 mg/L NAA for differentiation rate of adventitious bud.