As for the ultra-precision grinding of the hemispherical fused silica resonator,due to the hard and brittle nature of fused silica,subsurface damage(SSD)is easily generated,which enormously influences the performance ...As for the ultra-precision grinding of the hemispherical fused silica resonator,due to the hard and brittle nature of fused silica,subsurface damage(SSD)is easily generated,which enormously influences the performance of such components.Hence,ultra-precision grinding experiments are carried out to investigate the surface/subsurface quality of the hemispherical resonator machined by the small ball-end fine diamond grinding wheel.The influence of grinding parameters on the surface roughness(SR)and SSD depth of fused silica samples is then analyzed.The experimental results indicate that the SR and SSD depth decreased with the increase of grinding speed and the decrease of feed rate and grinding depth.In addition,based on the material strain rate and the maximum undeformed chip thickness,the effect of grinding parameters on the subsurface damage mechanism of fused silica samples is analyzed.Furthermore,a multi-step ultra-precision grinding technique of the hemispherical resonator is proposed based on the interaction influence between grinding depth and feed rate.Finally,the hemispherical resonator is processed by the proposed grinding technique,and the SR is improved from 454.328 nm to 110.449 nm while the SSD depth is reduced by 94%from 40μm to 2.379μm.The multi-step grinding technique proposed in this paper can guide the fabrication of the hemispherical resonator.展开更多
In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynam...In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynamics aspects.By comparing and analyzing the light paths of the protrusion and the dimple,it can be concluded that when sunlight shines on the dimple,it is reflected and absorbed multiple times,whereas for the sunlight shining on the protrusion,there is no secondary reflection or absorption of light.When the lighting area and the properties of the surfaces are the same,the absorption rate of the dimple is 10.3 percentage points higher than that of the protrusion.In the range of Reynolds number from 3000 to 11000,numerical simulations about the effects of the relative height(e/Dh=0.033–0.1)and relative spacing(p/e=4.5–8.5)of protrusions on air heat transfer and flow resistance show that,in terms of comprehensive evaluation coefficient(PF),the best relative height is 0.085,when the relative spacing is 5.A correlation of Nu and f with Re,e/Dh and p/e is obtained by linear regression of the results,in order to provide a useful reference for the design and optimization of this kind of solar air collector.展开更多
Examining the contribution of hemispherical photographs in the understanding of Natural forest regeneration is very important in estimating the future forest structure, composition and to enforce conservation regulati...Examining the contribution of hemispherical photographs in the understanding of Natural forest regeneration is very important in estimating the future forest structure, composition and to enforce conservation regulations. This study sets out to examine the interaction between stump sprouting, LAI, site and canopy openness for the entire AKAK forest area and for the logging compartments;2013, 2015 and 2017 respectively. 49 sprouted stump were identified randonly. 20 m × 20 m plots were demarcated along a canopy gaps for each sprouted stump, the plots were established in such a manner that the sprouted stumps will be in the middle. For each of the selected 49 sprouted stump, indirect measurements of canopy cover were performed in the 49 plots of 20 m × 20 m (0.04 ha), giving a total of 1.96 ha of land covered. Galaxy S3 smartphone with a built-in Infinix ZERO 4 fish-eye lens with 198˚ view angle equidistant projection was used to take photos. The fish-eye lens was mounted on the phone camera and photograph were taken at a fixed height of 1.3 m. Results revealed that, the combine Principal Component Factor Analysis (2013, 2015 and 2017) of the correlation matrix for Sprout, Years, LAI 4%, LAI 5%, Canopy and Site openness, shows that factor 1 explained 62.6% of total variance while factor 2 explained 17.9% together explain 80.05% Communalities. For the year 2013, 2015 and 2017 respectively shows that there is a very strong correlation (p p < 0.0005) between LAI4 and LAI5.展开更多
The mass non-uniformity of hemispherical resonator is one of reasons for frequency split,and frequency split can cause gyroscope to drift.Therefore,it is of great significance to analyze the relationship between mass ...The mass non-uniformity of hemispherical resonator is one of reasons for frequency split,and frequency split can cause gyroscope to drift.Therefore,it is of great significance to analyze the relationship between mass non-uniformity and frequency split,which can provide a theoretical basis for mass balance of imperfect resonator.The starting point of error mechanism analysis for gyroscope is the motion equations of resonator.Firstly,based on the Kirchhoff-Love hypothesis in the elastic thin shell theory,the geometric deformation equations of resonator are deduced.Secondly,the deformation energy equation of resonator is derived according to the vibration mode and relationship between the stress and strain of hemispherical thin shell.Thirdly,the kinetic energy equation of resonator is deduced by the Coriolis theorem.Finally,the motion equations of resonator are established by the Lagrange mechanics principle.The theoretical values of precession factor and natural frequency are calculated by the motion equations,which are substantially consistent with the ones by the finite element method and practical measurement,the errors are within a reasonable range.Simultaneously,the varying trend of natural frequency with respect to the geometrical and physical parameters of resonator by the motion equations is consistent with that by the finite element analysis.The above conclusions prove the correctness and rationality of motion equations.Similarly,the motion equations of resonator with mass non-uniformity are established by the same modeling method in case of ignoring the input angular rate and damping,and the state equations with respect to the velocity and displacement of vibration system are derived,then twonatural frequencies are solved by the characteristic equation.It is concluded that one of reasons for frequency split is the 4 th harmonic of mass non-uniformity,and thus much attention should be paid to minimizing the 4 th harmonic of mass non-uniformity in the course of mass balancing for imperfect resonator.展开更多
Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to...Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to achieve in-situ measurement of heavy metals in farmland soils by LIBS, a hemispherical spatial confinement device is designed and used to collect plasma spectra, in which the optical fibers directly collect the breakdown spectroscopy of the soil samples. This device could effectively increase the stability of the spectrum intensity of soil. It also has other advantages, such as ease of installation, and its small and compact size. The relationship between the spectrum intensity and the laser pulse energy is studied for this device. It is found that the breakdown threshold is 160 cm-2, and when the laser fluence increases to 250 J/cm2, the spectrum intensity reaches its maximum. Four different kinds of laser pulse energy were set up and in each case the limits of detection of Cd, Cu, Ni, Pb and Zn were calculated. The results show that when the laser pulse fluence was 2.12 GW/cm2, we obtained the smallest limits of detection of these heavy metals, which are all under 10 mg/kg. This device can satisfy the needs of heavy metal in-situ detection, and in the next step it will be integrated into a portable LIBS instrument.展开更多
Hemispherical Resonator Gyroscope(HRG)is a classical high precision Coriolis Vibration Gyroscope(CVG),which performs attitude estimation of carrier by detecting the precession of standing wave of resonator,thus,the dr...Hemispherical Resonator Gyroscope(HRG)is a classical high precision Coriolis Vibration Gyroscope(CVG),which performs attitude estimation of carrier by detecting the precession of standing wave of resonator,thus,the drift of standing wave of resonator has a great influence on the output accuracy of gyroscope,where the quality factor non-uniformity of resonator is one of main error sources.Ring electrode is a classical excitation structure of HRG because the standing wave can precess freely under its excitation,which makes the gyroscope have more accurate scale factor,larger measurement range and better dynamic characteristics.In this paper,the equations of motion of an ideal resonator excited by a ring electrode are derived by the elastic thin shell theory and Lagrange mechanical principle,then the corresponding equivalent mechanical model is established.According to the“average method”,it can be seen that the ideal resonator excited by the ring electrode works in integral mode,and any position in the circumferential direction of resonator can be a working point,which means that the quality factor non-uniformity has a great effect on the drift of standing wave.Therefore,the equations of motion of resonator with quality factor non-uniformity under the ring electrode excitation are deduced by the equivalent mechanical model,and the drift model of standing wave is established by the“average method”,it can be found that both the amplitude of quality factor non-uniformity and angle between the“inherent damping axis”and antinode axis of standing wave can affect the drift rate of standing wave.Moreover,the drift model indicates that if the input angular rate does not reach the threshold,the precession angular rate of standing wave will appear“self-locking”phenomenon,that is,the gyroscope will lose the integral effect.展开更多
An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion te...An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.展开更多
Abstract An analytical solution to the three-dimen-sional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expa...Abstract An analytical solution to the three-dimen-sional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expan-sion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the nor-malized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.展开更多
Daily Total Column Ozone (TCO) measurements compiled from Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instruments (OMI) were used to analyze the global and hemispherical TCO interannual variations. Tw...Daily Total Column Ozone (TCO) measurements compiled from Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instruments (OMI) were used to analyze the global and hemispherical TCO interannual variations. Two periods of TCO measurements were analyzed separately covering full years. For the 1978-1994 period, the TCO showed a global decade decrease rate of 13.45 DU (about -4.3%). For the Northern Hemisphere(NH) the decade decrease rate was of 12.96 DU (-4.0%), while in the Southern Hemisphere (SH) was of 13.57 DU (-4.5%). These decreases in ozone trends, using the totality of TOMS and OMI satellite measurements, are greater than those reported in literature. The 1998-2014 period global TCO decade decrease rate was of 1.56 DU, corresponding 0.94 DU and 0.138 DU for the NH and SH, respectively. The global TCO variations must show a double annual periodicity, the first one with maxima in March due to the Northern Hemisphere (NH) and the second one during September due to the Southern Hemisphere (SH). However, the maxima due to SH TCO interannual variations have gradually vanished. A disturbance in the SH TCO interannual variations has appeared since 1980;graphically the periodicity brakes down and transforms to a double peak from 1985 and on. This effect can be attributed to the hemispheric impact of the ozone hole at the South Pole. Between October 1, 2004 and December 14, 2005 TOMS and OMI have recorded this disturbance unequivocally. We conclude that the disturbance in SH TCO has an irreversible character.展开更多
In this paper,the effects of hardening exponent,yield strength and elastic modulus on the deformability of near hemispherical shells are investigated by means of finite element method and orthogonal experiment design....In this paper,the effects of hardening exponent,yield strength and elastic modulus on the deformability of near hemispherical shells are investigated by means of finite element method and orthogonal experiment design.The largest eccentric angle during the deformation process and thickness reduction after the deformation are introduced to estimate the deformability quantitatively according to the deformation characteristics of near hemispherical shells.The results indicate that the hardening exponent is the most influential parameter,followed by elastic modulus and yield strength.The shell exhibits good deformability when the hardening exponent and elastic modulus are in the range of 0.1-0.125 and 70-108 GPa,respectively.展开更多
Maximizing quality factor (Q) is essential to improve the performance of micro hemispherical shell resonators (μHSRs) which can be used in microelectromechanical system (MEMS) gyroscopes to measure angular rotation.S...Maximizing quality factor (Q) is essential to improve the performance of micro hemispherical shell resonators (μHSRs) which can be used in microelectromechanical system (MEMS) gyroscopes to measure angular rotation.Several energy dissipation mechanisms limit Q,where thermoelastic dissipation (TED) is the major one and studied in this paper.Fully coupled thermo-mechanical equations for calculating TED are formulated,and then temperature distribution in a deformed μHSR and its quality factor related to TED (QTED) are obtained by solving the equations through a finite-element method (FEM).It has been found that different fabrication process conditions can obtain various geometrical parameters in our previous studies.In order to provide guidelines for the design and fabrication of μHSRs,the effects of their geometry on resonant frequency (f0) and QTED are studied.The change of anchor height and small enough anchor radius have no effect on both f0 and QTED,but the shell size including its radius,thickness and height has significant impact on f0 and QTED.It is found that whether a μHSR has lower f0 and higher QTED or higher f0 and higher QTED can be achieved by changing these geometrical parameters.The results presented in this paper can also be applied to other similar resonators.展开更多
In order to investigate the draping behavior of non-crimp fabrics(NCFs), two types of carbon NCFs with tricot-chain stitches or chain stitches were formed on a hemispherical mould via a stretch forming process. The ...In order to investigate the draping behavior of non-crimp fabrics(NCFs), two types of carbon NCFs with tricot-chain stitches or chain stitches were formed on a hemispherical mould via a stretch forming process. The shear angle and forming defects of the fabrics were measured on the hemisphere, under different blank holder forces(BHFs). The results showed that increasing BHF could enhance the shear angle slightly, reduce the asymmetry for the deformation of the fabrics, and change the main type of the process-induced defects. Besides, compression tests were performed on the corresponding composite components. By analyzing the change of fiber volume fraction and structural parameters of the textile reinforcements, the effects of draping behavior of NCFs on the mechanical performance of the composites were studied. The results reveal that draping process has distinguishable impacts on the mechanical properties of the final components, which is closely related to the stitching pattern of the NCFs.展开更多
The exciton Stark shift and polarization in hemispherical quantum dots(HQDs)each as a function of strength and orientation of applied electric field are theoretically investigated by an exact diagonalization method.A ...The exciton Stark shift and polarization in hemispherical quantum dots(HQDs)each as a function of strength and orientation of applied electric field are theoretically investigated by an exact diagonalization method.A highly anisotropic Stark redshift of exciton energy is found.As the electric field is rotated from Voigt to Faraday geometry,the redshift of exciton energy monotonically decreases.This is because the asymmetric geometric shape of the hemispherical quantum dot restrains the displacement of the wave function to the higher orbital state in response to electric field along Faraday geometry.A redshift of hole energy is found all the time while a transition of electron energy from this redshift to a blueshift is found as the field is rotated from Voigt to Faraday geometry.Taking advantage of the diminishing of Stark effect along Faraday geometry,the hemispherical shapes can be used to improve significantly the radiative recombination efficiency of the polar optoelectronic devices if the strong internal polarized electric field is along Faraday geometry.展开更多
Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest ...Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest plots via DHP is choosing a sampling scheme.However,various sampling schemes involving DHP have been used for the LAI estimation of forest plots.To date,the impact of sampling schemes on LAI estimation from DHP has not been comprehensively investigated.Methods:In this study,13 commonly used sampling schemes which belong to five sampling types(i.e.dispersed,square,cross,transect and circle)were adopted in the LAI estimation of five Larix principis-rupprechtii plots(25m×25 m).An additional sampling scheme(with a sample size of 89)was generated on the basis of all the sample points of the 13 sampling schemes.Three typical inversion models and four canopy element clumping index(Ωe)algorithms were involved in the LAI estimation.The impacts of the sampling schemes on four variables,including gap fraction,Ωe,effective plant area index(PAIe)and LAI estimation from DHP were analysed.The LAI estimates obtained with different sampling schemes were then compared with those obtained from litter collection measurements.Results:Large differences were observed for all four variable estimates(i.e.gap fraction,Ωe,PAIe and LAI)under different sampling schemes.The differences in impact of sampling schemes on LAI estimation were not obvious for the three inversion models,if the fourΩe algorithms,except for the traditional gap-size analysis algorithm were adopted in the estimation.The accuracy of LAI estimation was not always improved with an increase in sample size.Moreover,results indicated that with the appropriate inversion model,Ωe algorithm and sampling scheme,the maximum estimation error of DHP-estimated LAI at elementary sampling unit can be less than 20%,which is required by the global climate observing system,except in forest plots with extremely large LAI values(~>6.0).However,obtaining an LAI from DHP with an estimation error lower than 5%is impossible regardless of which combination of inversion model,Ωe algorithm and sampling scheme is used.Conclusion:The LAI estimation of L.principis-rupprechtii forests from DHP was largely affected by the sampling schemes adopted in the estimation.Thus,the sampling scheme should be seriously considered in the LAI estimation.One square and two transect sampling schemes(with sample sizes ranging from 3 to 9)were recommended to be used to estimate the LAI of L.principis-rupprechtii forests with the smallest mean relative error(MRE).By contrast,three cross and one dispersed sampling schemes were identified to provide LAI estimates with relatively large MREs.展开更多
Hemispherical shell resonator(HSR)is the core component of hemispherical resonator gyro.It is aφ-shaped small-bore complex component with minimum curvature radius less than 3 mm.Thus,traditional polishing methods are...Hemispherical shell resonator(HSR)is the core component of hemispherical resonator gyro.It is aφ-shaped small-bore complex component with minimum curvature radius less than 3 mm.Thus,traditional polishing methods are difficult to polish it.Small ball-end magnetorheological polishing method can polish the small components with complicated three-dimensional surface and obtain non-destructive surface.Therefore,this method is suitable for polishing HSR.However,the material removal rate of the ordinary small ball-end magnetorheological polishing is low,leading to long polishing time and low output of HSR.To solve this problem,a water bath heating assisted small ball-end magnetorheological polishing method is proposed in this research.The influence rule of processing parameters on the material removal rate is studied experimentally.A set of optimal processing parameters is obtained to maximize the material removal rate.Compared with the ordinary method,the material removal rate of the new method can be improved by 143%.Subsequently,an HSR is polished by the new method.The results show that the polishing time can be reduced by 55%,and the polished surface roughness can reach 7.7 nm.The new method has the great potential to be used in actual production to improve the polishing efficiency of HSR.展开更多
The asymmetric deformation and eccentricity problems of near hemispherical diaphragm under the uniform surface load are quantitatively characterized in the paper.The analysis is based on a 3D finite element analysis (...The asymmetric deformation and eccentricity problems of near hemispherical diaphragm under the uniform surface load are quantitatively characterized in the paper.The analysis is based on a 3D finite element analysis (FEA) model established according to elastic-plasticity and large displacement nonlinear finite element method.Besides,the deformation experiments are taken to validate the reliability of FEA model which shows that the simulation results are in good agreement with the experimental results.Then,three angle parameters,deflection angle β,circumvolving angle θ and distributing angle γ,are introduced and expressed to characterize the asymmetric deformation and eccentricity quantitatively.According to the angle parameters,the inversion processes of uniform thickness diaphragm and varying thickness diaphragm are calculated respectively.The inversion process of varying thickness diaphragm is much steadier than that of uniform thickness diaphragm.The present results show that the asymmetric deformation process can be characterized by curve of three angle parameters (β,θ,γ) exactly,the degrees of eccentricity can be indicated by the final value of deflection angle and the eccentricity position can be characterized by the final values of the three angle parameters.展开更多
This paper makes detailed analyses tor the flexural vibration (frequency) of the hemispherical shell and presents the varying laws of frequency with the rarving boundary angles and the wall thickness of the above shel...This paper makes detailed analyses tor the flexural vibration (frequency) of the hemispherical shell and presents the varying laws of frequency with the rarving boundary angles and the wall thickness of the above shell, It is an important value to develop the instrument, such as hemispherical resonator gyro (HRG), whose sensing component is a hemispherical shell.展开更多
The two control methods, namely the general-control and the quadrature-control modes for HRG under force-rebalance mode were introduced firstly. Then the azimuth of antinode on the hemispherical resonator was deduced....The two control methods, namely the general-control and the quadrature-control modes for HRG under force-rebalance mode were introduced firstly. Then the azimuth of antinode on the hemispherical resonator was deduced. The dynamics equations of resonator under the nonuniformity of density distribution were established by way of Bubonov-Galerkin method which is commonly used for solution of differential equations, and the state equation was established through the dynamics equations. The analytic solutions of the vibration displacement and the velocity were achieved by solving the state equation, and then the ratio of rebalance excitation to primary excitation was derived under the two working modes, thus the estimation of input angular rate of HRG were obtained. By comparing and calculating these two modes, the error caused by resonator's machining defects can be greatly inhibited under quadrature-control, and the fourth harmonic density error's tolerance were calculated to ensure the accuracy of HRG under these two modes.展开更多
This paper is a study of the gravitational attraction between two uniform hemispherical masses aligned such that the pair is cylindrically symmetric. Three variations are considered: flat side to flat side, curved sid...This paper is a study of the gravitational attraction between two uniform hemispherical masses aligned such that the pair is cylindrically symmetric. Three variations are considered: flat side to flat side, curved side to curved side, and flat side to curved side. Expressions for the second and third variation are derived from the first, with the use of superposition and the well-known gravitational behavior of a spherical mass as equivalent to a point mass at its center. The study covers two masses of equal diameter and of different diameters, such that one is four times that of the other. Calculations are done for separations from zero to fifty times the radius of the larger of the two, which is effectively the asymptotic limit. It is demonstrated that at any separation, the force can be expressed as if the two hemispheres were point masses separated by a certain distance. Expressions for that distance and the location of the (fictitious) point masses within each hemisphere are presented. Unlike the case of two spherical masses, the location within their respective hemisphere is not necessarily the same for each point and both are dependent upon the separation between the two hemispheres. The calculation for the first variation is done in two ways. The first is a “brute force” multi-dimensional integral with the help of Wolfram Mathematica. The second is an axial expansion for the potential modified for off-axis locations by Legendre polynomials. With only a few terms in the expansion, the results of the second method are in extremely good agreement with those of the first. Finally, an interesting application to a split earth is presented.展开更多
Hemispherical photography has been used for many years to measure the physical characteristics of forests, but most related image processing work has focused on leafy canopies or conifers. The boreal forest contains l...Hemispherical photography has been used for many years to measure the physical characteristics of forests, but most related image processing work has focused on leafy canopies or conifers. The boreal forest contains large areas of deciduous trees that remain leafless for over half the year, influencing surface albedo and snow dynamics. Hemispherical photographs of these sparse, twiggy canopies are difficult to acquire and analyze due to bright bark and reflections from snow. This Note presents new methods for producing binary images from hemispherical photographs of a leafless boreal birch forest. Firstly, a thresholding method based on differences between colour panes provides a quick way to remove bright sunlit patches on vegetation. Secondly, an algorithm for joining up fragmented pieces of tree after thresholding ensures a continuous canopy. These methods reduce the estimated hemispherical sky view fraction by up to 6% and 3%, respectively. Although the processing remains subjective to some degree, these tools help to standardize analysis and allow the use of some photographs that might have previously been considered unsuitable for scientific purposes.展开更多
基金This work was supported by the National Key Research and Development Program of China(No.2022YFB3403600)the National Natural Science Foundation of China(No.52293403)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(No.SKLRS202204C).
文摘As for the ultra-precision grinding of the hemispherical fused silica resonator,due to the hard and brittle nature of fused silica,subsurface damage(SSD)is easily generated,which enormously influences the performance of such components.Hence,ultra-precision grinding experiments are carried out to investigate the surface/subsurface quality of the hemispherical resonator machined by the small ball-end fine diamond grinding wheel.The influence of grinding parameters on the surface roughness(SR)and SSD depth of fused silica samples is then analyzed.The experimental results indicate that the SR and SSD depth decreased with the increase of grinding speed and the decrease of feed rate and grinding depth.In addition,based on the material strain rate and the maximum undeformed chip thickness,the effect of grinding parameters on the subsurface damage mechanism of fused silica samples is analyzed.Furthermore,a multi-step ultra-precision grinding technique of the hemispherical resonator is proposed based on the interaction influence between grinding depth and feed rate.Finally,the hemispherical resonator is processed by the proposed grinding technique,and the SR is improved from 454.328 nm to 110.449 nm while the SSD depth is reduced by 94%from 40μm to 2.379μm.The multi-step grinding technique proposed in this paper can guide the fabrication of the hemispherical resonator.
基金the Key Scientific Research Projects of Colleges and Universities in Henan Province(22B480007).
文摘In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynamics aspects.By comparing and analyzing the light paths of the protrusion and the dimple,it can be concluded that when sunlight shines on the dimple,it is reflected and absorbed multiple times,whereas for the sunlight shining on the protrusion,there is no secondary reflection or absorption of light.When the lighting area and the properties of the surfaces are the same,the absorption rate of the dimple is 10.3 percentage points higher than that of the protrusion.In the range of Reynolds number from 3000 to 11000,numerical simulations about the effects of the relative height(e/Dh=0.033–0.1)and relative spacing(p/e=4.5–8.5)of protrusions on air heat transfer and flow resistance show that,in terms of comprehensive evaluation coefficient(PF),the best relative height is 0.085,when the relative spacing is 5.A correlation of Nu and f with Re,e/Dh and p/e is obtained by linear regression of the results,in order to provide a useful reference for the design and optimization of this kind of solar air collector.
文摘Examining the contribution of hemispherical photographs in the understanding of Natural forest regeneration is very important in estimating the future forest structure, composition and to enforce conservation regulations. This study sets out to examine the interaction between stump sprouting, LAI, site and canopy openness for the entire AKAK forest area and for the logging compartments;2013, 2015 and 2017 respectively. 49 sprouted stump were identified randonly. 20 m × 20 m plots were demarcated along a canopy gaps for each sprouted stump, the plots were established in such a manner that the sprouted stumps will be in the middle. For each of the selected 49 sprouted stump, indirect measurements of canopy cover were performed in the 49 plots of 20 m × 20 m (0.04 ha), giving a total of 1.96 ha of land covered. Galaxy S3 smartphone with a built-in Infinix ZERO 4 fish-eye lens with 198˚ view angle equidistant projection was used to take photos. The fish-eye lens was mounted on the phone camera and photograph were taken at a fixed height of 1.3 m. Results revealed that, the combine Principal Component Factor Analysis (2013, 2015 and 2017) of the correlation matrix for Sprout, Years, LAI 4%, LAI 5%, Canopy and Site openness, shows that factor 1 explained 62.6% of total variance while factor 2 explained 17.9% together explain 80.05% Communalities. For the year 2013, 2015 and 2017 respectively shows that there is a very strong correlation (p p < 0.0005) between LAI4 and LAI5.
基金the Pre-Research Fund during the“13th Five-Year Plan” (No. 41417060101)。
文摘The mass non-uniformity of hemispherical resonator is one of reasons for frequency split,and frequency split can cause gyroscope to drift.Therefore,it is of great significance to analyze the relationship between mass non-uniformity and frequency split,which can provide a theoretical basis for mass balance of imperfect resonator.The starting point of error mechanism analysis for gyroscope is the motion equations of resonator.Firstly,based on the Kirchhoff-Love hypothesis in the elastic thin shell theory,the geometric deformation equations of resonator are deduced.Secondly,the deformation energy equation of resonator is derived according to the vibration mode and relationship between the stress and strain of hemispherical thin shell.Thirdly,the kinetic energy equation of resonator is deduced by the Coriolis theorem.Finally,the motion equations of resonator are established by the Lagrange mechanics principle.The theoretical values of precession factor and natural frequency are calculated by the motion equations,which are substantially consistent with the ones by the finite element method and practical measurement,the errors are within a reasonable range.Simultaneously,the varying trend of natural frequency with respect to the geometrical and physical parameters of resonator by the motion equations is consistent with that by the finite element analysis.The above conclusions prove the correctness and rationality of motion equations.Similarly,the motion equations of resonator with mass non-uniformity are established by the same modeling method in case of ignoring the input angular rate and damping,and the state equations with respect to the velocity and displacement of vibration system are derived,then twonatural frequencies are solved by the characteristic equation.It is concluded that one of reasons for frequency split is the 4 th harmonic of mass non-uniformity,and thus much attention should be paid to minimizing the 4 th harmonic of mass non-uniformity in the course of mass balancing for imperfect resonator.
文摘Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to achieve in-situ measurement of heavy metals in farmland soils by LIBS, a hemispherical spatial confinement device is designed and used to collect plasma spectra, in which the optical fibers directly collect the breakdown spectroscopy of the soil samples. This device could effectively increase the stability of the spectrum intensity of soil. It also has other advantages, such as ease of installation, and its small and compact size. The relationship between the spectrum intensity and the laser pulse energy is studied for this device. It is found that the breakdown threshold is 160 cm-2, and when the laser fluence increases to 250 J/cm2, the spectrum intensity reaches its maximum. Four different kinds of laser pulse energy were set up and in each case the limits of detection of Cd, Cu, Ni, Pb and Zn were calculated. The results show that when the laser pulse fluence was 2.12 GW/cm2, we obtained the smallest limits of detection of these heavy metals, which are all under 10 mg/kg. This device can satisfy the needs of heavy metal in-situ detection, and in the next step it will be integrated into a portable LIBS instrument.
文摘Hemispherical Resonator Gyroscope(HRG)is a classical high precision Coriolis Vibration Gyroscope(CVG),which performs attitude estimation of carrier by detecting the precession of standing wave of resonator,thus,the drift of standing wave of resonator has a great influence on the output accuracy of gyroscope,where the quality factor non-uniformity of resonator is one of main error sources.Ring electrode is a classical excitation structure of HRG because the standing wave can precess freely under its excitation,which makes the gyroscope have more accurate scale factor,larger measurement range and better dynamic characteristics.In this paper,the equations of motion of an ideal resonator excited by a ring electrode are derived by the elastic thin shell theory and Lagrange mechanical principle,then the corresponding equivalent mechanical model is established.According to the“average method”,it can be seen that the ideal resonator excited by the ring electrode works in integral mode,and any position in the circumferential direction of resonator can be a working point,which means that the quality factor non-uniformity has a great effect on the drift of standing wave.Therefore,the equations of motion of resonator with quality factor non-uniformity under the ring electrode excitation are deduced by the equivalent mechanical model,and the drift model of standing wave is established by the“average method”,it can be found that both the amplitude of quality factor non-uniformity and angle between the“inherent damping axis”and antinode axis of standing wave can affect the drift rate of standing wave.Moreover,the drift model indicates that if the input angular rate does not reach the threshold,the precession angular rate of standing wave will appear“self-locking”phenomenon,that is,the gyroscope will lose the integral effect.
基金Project supported by the National Natural Science Foundation of China (No. 50478062) and Natural Science Foundation of Beijing (No. 8052015).
文摘An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.
基金The project was supported by the National Natural Science Foundation of China (50478062 and 10532070)Open Fund at the Key Laboratory of Urban Security and Disaster Engineering (Beijing University of Technology)Chinese Ministry of Education.
文摘Abstract An analytical solution to the three-dimen-sional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expan-sion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the nor-malized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.
文摘Daily Total Column Ozone (TCO) measurements compiled from Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instruments (OMI) were used to analyze the global and hemispherical TCO interannual variations. Two periods of TCO measurements were analyzed separately covering full years. For the 1978-1994 period, the TCO showed a global decade decrease rate of 13.45 DU (about -4.3%). For the Northern Hemisphere(NH) the decade decrease rate was of 12.96 DU (-4.0%), while in the Southern Hemisphere (SH) was of 13.57 DU (-4.5%). These decreases in ozone trends, using the totality of TOMS and OMI satellite measurements, are greater than those reported in literature. The 1998-2014 period global TCO decade decrease rate was of 1.56 DU, corresponding 0.94 DU and 0.138 DU for the NH and SH, respectively. The global TCO variations must show a double annual periodicity, the first one with maxima in March due to the Northern Hemisphere (NH) and the second one during September due to the Southern Hemisphere (SH). However, the maxima due to SH TCO interannual variations have gradually vanished. A disturbance in the SH TCO interannual variations has appeared since 1980;graphically the periodicity brakes down and transforms to a double peak from 1985 and on. This effect can be attributed to the hemispheric impact of the ozone hole at the South Pole. Between October 1, 2004 and December 14, 2005 TOMS and OMI have recorded this disturbance unequivocally. We conclude that the disturbance in SH TCO has an irreversible character.
基金the National Natural Science Foundation of China (No.50805121)the National Basic Research Program (973) of China (No.2007CB13802)
文摘In this paper,the effects of hardening exponent,yield strength and elastic modulus on the deformability of near hemispherical shells are investigated by means of finite element method and orthogonal experiment design.The largest eccentric angle during the deformation process and thickness reduction after the deformation are introduced to estimate the deformability quantitatively according to the deformation characteristics of near hemispherical shells.The results indicate that the hardening exponent is the most influential parameter,followed by elastic modulus and yield strength.The shell exhibits good deformability when the hardening exponent and elastic modulus are in the range of 0.1-0.125 and 70-108 GPa,respectively.
基金the National Natural Science Foundation of China(No.61574093)the National Key Laboratory of Science and Technology on Nano/Micro Fabrication(No.614280504010317)+1 种基金the Aerospace Science and Technology Innovation Fund(No.16GFZJJ01-309),the Space Advanced Technology Joint Research Innovation Fund(No.USCAST2016-5)the Professional Technical Service Platform of Shanghai(No.19DZ2291103)。
文摘Maximizing quality factor (Q) is essential to improve the performance of micro hemispherical shell resonators (μHSRs) which can be used in microelectromechanical system (MEMS) gyroscopes to measure angular rotation.Several energy dissipation mechanisms limit Q,where thermoelastic dissipation (TED) is the major one and studied in this paper.Fully coupled thermo-mechanical equations for calculating TED are formulated,and then temperature distribution in a deformed μHSR and its quality factor related to TED (QTED) are obtained by solving the equations through a finite-element method (FEM).It has been found that different fabrication process conditions can obtain various geometrical parameters in our previous studies.In order to provide guidelines for the design and fabrication of μHSRs,the effects of their geometry on resonant frequency (f0) and QTED are studied.The change of anchor height and small enough anchor radius have no effect on both f0 and QTED,but the shell size including its radius,thickness and height has significant impact on f0 and QTED.It is found that whether a μHSR has lower f0 and higher QTED or higher f0 and higher QTED can be achieved by changing these geometrical parameters.The results presented in this paper can also be applied to other similar resonators.
基金Funded by the National Natural Science Foundation of China(No.51203144)
文摘In order to investigate the draping behavior of non-crimp fabrics(NCFs), two types of carbon NCFs with tricot-chain stitches or chain stitches were formed on a hemispherical mould via a stretch forming process. The shear angle and forming defects of the fabrics were measured on the hemisphere, under different blank holder forces(BHFs). The results showed that increasing BHF could enhance the shear angle slightly, reduce the asymmetry for the deformation of the fabrics, and change the main type of the process-induced defects. Besides, compression tests were performed on the corresponding composite components. By analyzing the change of fiber volume fraction and structural parameters of the textile reinforcements, the effects of draping behavior of NCFs on the mechanical performance of the composites were studied. The results reveal that draping process has distinguishable impacts on the mechanical properties of the final components, which is closely related to the stitching pattern of the NCFs.
文摘The exciton Stark shift and polarization in hemispherical quantum dots(HQDs)each as a function of strength and orientation of applied electric field are theoretically investigated by an exact diagonalization method.A highly anisotropic Stark redshift of exciton energy is found.As the electric field is rotated from Voigt to Faraday geometry,the redshift of exciton energy monotonically decreases.This is because the asymmetric geometric shape of the hemispherical quantum dot restrains the displacement of the wave function to the higher orbital state in response to electric field along Faraday geometry.A redshift of hole energy is found all the time while a transition of electron energy from this redshift to a blueshift is found as the field is rotated from Voigt to Faraday geometry.Taking advantage of the diminishing of Stark effect along Faraday geometry,the hemispherical shapes can be used to improve significantly the radiative recombination efficiency of the polar optoelectronic devices if the strong internal polarized electric field is along Faraday geometry.
基金the National Science Foundation of China(Grant Nos.41871233,41371330 , 41001203).
文摘Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest plots via DHP is choosing a sampling scheme.However,various sampling schemes involving DHP have been used for the LAI estimation of forest plots.To date,the impact of sampling schemes on LAI estimation from DHP has not been comprehensively investigated.Methods:In this study,13 commonly used sampling schemes which belong to five sampling types(i.e.dispersed,square,cross,transect and circle)were adopted in the LAI estimation of five Larix principis-rupprechtii plots(25m×25 m).An additional sampling scheme(with a sample size of 89)was generated on the basis of all the sample points of the 13 sampling schemes.Three typical inversion models and four canopy element clumping index(Ωe)algorithms were involved in the LAI estimation.The impacts of the sampling schemes on four variables,including gap fraction,Ωe,effective plant area index(PAIe)and LAI estimation from DHP were analysed.The LAI estimates obtained with different sampling schemes were then compared with those obtained from litter collection measurements.Results:Large differences were observed for all four variable estimates(i.e.gap fraction,Ωe,PAIe and LAI)under different sampling schemes.The differences in impact of sampling schemes on LAI estimation were not obvious for the three inversion models,if the fourΩe algorithms,except for the traditional gap-size analysis algorithm were adopted in the estimation.The accuracy of LAI estimation was not always improved with an increase in sample size.Moreover,results indicated that with the appropriate inversion model,Ωe algorithm and sampling scheme,the maximum estimation error of DHP-estimated LAI at elementary sampling unit can be less than 20%,which is required by the global climate observing system,except in forest plots with extremely large LAI values(~>6.0).However,obtaining an LAI from DHP with an estimation error lower than 5%is impossible regardless of which combination of inversion model,Ωe algorithm and sampling scheme is used.Conclusion:The LAI estimation of L.principis-rupprechtii forests from DHP was largely affected by the sampling schemes adopted in the estimation.Thus,the sampling scheme should be seriously considered in the LAI estimation.One square and two transect sampling schemes(with sample sizes ranging from 3 to 9)were recommended to be used to estimate the LAI of L.principis-rupprechtii forests with the smallest mean relative error(MRE).By contrast,three cross and one dispersed sampling schemes were identified to provide LAI estimates with relatively large MREs.
基金supported by the National Key Research and Development Program of China(No.2022YFB3403600)the National Natural Science Foundation of China(No.52293403)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(No.SKLRS202204C)。
文摘Hemispherical shell resonator(HSR)is the core component of hemispherical resonator gyro.It is aφ-shaped small-bore complex component with minimum curvature radius less than 3 mm.Thus,traditional polishing methods are difficult to polish it.Small ball-end magnetorheological polishing method can polish the small components with complicated three-dimensional surface and obtain non-destructive surface.Therefore,this method is suitable for polishing HSR.However,the material removal rate of the ordinary small ball-end magnetorheological polishing is low,leading to long polishing time and low output of HSR.To solve this problem,a water bath heating assisted small ball-end magnetorheological polishing method is proposed in this research.The influence rule of processing parameters on the material removal rate is studied experimentally.A set of optimal processing parameters is obtained to maximize the material removal rate.Compared with the ordinary method,the material removal rate of the new method can be improved by 143%.Subsequently,an HSR is polished by the new method.The results show that the polishing time can be reduced by 55%,and the polished surface roughness can reach 7.7 nm.The new method has the great potential to be used in actual production to improve the polishing efficiency of HSR.
基金the National Basic Research Program(973) of China (No.2007CB613802)the National Natural Science Foundation of China (No.50805121)
文摘The asymmetric deformation and eccentricity problems of near hemispherical diaphragm under the uniform surface load are quantitatively characterized in the paper.The analysis is based on a 3D finite element analysis (FEA) model established according to elastic-plasticity and large displacement nonlinear finite element method.Besides,the deformation experiments are taken to validate the reliability of FEA model which shows that the simulation results are in good agreement with the experimental results.Then,three angle parameters,deflection angle β,circumvolving angle θ and distributing angle γ,are introduced and expressed to characterize the asymmetric deformation and eccentricity quantitatively.According to the angle parameters,the inversion processes of uniform thickness diaphragm and varying thickness diaphragm are calculated respectively.The inversion process of varying thickness diaphragm is much steadier than that of uniform thickness diaphragm.The present results show that the asymmetric deformation process can be characterized by curve of three angle parameters (β,θ,γ) exactly,the degrees of eccentricity can be indicated by the final value of deflection angle and the eccentricity position can be characterized by the final values of the three angle parameters.
基金Projected supported by the National Natural Science Foundation of China
文摘This paper makes detailed analyses tor the flexural vibration (frequency) of the hemispherical shell and presents the varying laws of frequency with the rarving boundary angles and the wall thickness of the above shell, It is an important value to develop the instrument, such as hemispherical resonator gyro (HRG), whose sensing component is a hemispherical shell.
基金Sponsored by the National Defense Advanced Research Project(Grant No.51309050601)
文摘The two control methods, namely the general-control and the quadrature-control modes for HRG under force-rebalance mode were introduced firstly. Then the azimuth of antinode on the hemispherical resonator was deduced. The dynamics equations of resonator under the nonuniformity of density distribution were established by way of Bubonov-Galerkin method which is commonly used for solution of differential equations, and the state equation was established through the dynamics equations. The analytic solutions of the vibration displacement and the velocity were achieved by solving the state equation, and then the ratio of rebalance excitation to primary excitation was derived under the two working modes, thus the estimation of input angular rate of HRG were obtained. By comparing and calculating these two modes, the error caused by resonator's machining defects can be greatly inhibited under quadrature-control, and the fourth harmonic density error's tolerance were calculated to ensure the accuracy of HRG under these two modes.
文摘This paper is a study of the gravitational attraction between two uniform hemispherical masses aligned such that the pair is cylindrically symmetric. Three variations are considered: flat side to flat side, curved side to curved side, and flat side to curved side. Expressions for the second and third variation are derived from the first, with the use of superposition and the well-known gravitational behavior of a spherical mass as equivalent to a point mass at its center. The study covers two masses of equal diameter and of different diameters, such that one is four times that of the other. Calculations are done for separations from zero to fifty times the radius of the larger of the two, which is effectively the asymptotic limit. It is demonstrated that at any separation, the force can be expressed as if the two hemispheres were point masses separated by a certain distance. Expressions for that distance and the location of the (fictitious) point masses within each hemisphere are presented. Unlike the case of two spherical masses, the location within their respective hemisphere is not necessarily the same for each point and both are dependent upon the separation between the two hemispheres. The calculation for the first variation is done in two ways. The first is a “brute force” multi-dimensional integral with the help of Wolfram Mathematica. The second is an axial expansion for the potential modified for off-axis locations by Legendre polynomials. With only a few terms in the expansion, the results of the second method are in extremely good agreement with those of the first. Finally, an interesting application to a split earth is presented.
文摘Hemispherical photography has been used for many years to measure the physical characteristics of forests, but most related image processing work has focused on leafy canopies or conifers. The boreal forest contains large areas of deciduous trees that remain leafless for over half the year, influencing surface albedo and snow dynamics. Hemispherical photographs of these sparse, twiggy canopies are difficult to acquire and analyze due to bright bark and reflections from snow. This Note presents new methods for producing binary images from hemispherical photographs of a leafless boreal birch forest. Firstly, a thresholding method based on differences between colour panes provides a quick way to remove bright sunlit patches on vegetation. Secondly, an algorithm for joining up fragmented pieces of tree after thresholding ensures a continuous canopy. These methods reduce the estimated hemispherical sky view fraction by up to 6% and 3%, respectively. Although the processing remains subjective to some degree, these tools help to standardize analysis and allow the use of some photographs that might have previously been considered unsuitable for scientific purposes.