The Helmholtz SchrSdinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions pres...The Helmholtz SchrSdinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions presented by the Helmholtz-Schrodinger method. Thus, it can be used in similar cases where the amplitude of the electric field is the important quantity or eigenfunctions of the Schrodinger equation are needed for complicated quantum structures with hard wall boundary conditions.展开更多
A Legendre spectral element/Laguerre coupled method is proposed to numerically solve the elliptic Helmholtz problem on the half line. Rigorous analysis is carried out to establish the convergence of the method. Severa...A Legendre spectral element/Laguerre coupled method is proposed to numerically solve the elliptic Helmholtz problem on the half line. Rigorous analysis is carried out to establish the convergence of the method. Several numerical examples are provided to confirm the theoretical results. The advantage of this method is demonstrated by a numerical comparison with the pure Laguerre method.展开更多
1.Problems for electromagnetic scattering are of significant importance in many areas oftechnology.In this paper we discuss the scattering problem of electromagnetic wave incidentby using boundary element method assoc...1.Problems for electromagnetic scattering are of significant importance in many areas oftechnology.In this paper we discuss the scattering problem of electromagnetic wave incidentby using boundary element method associated with splines.The problem is modelled by aboundary value problem for the Helmholtz equation展开更多
This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mec...This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples.展开更多
In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-...In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-posed. We propose a regularization method for obtaining an approximate solution to the wave field on the unspecified boundary. We also give the convergence analysis and error estimate of the numerical algorithm. Finally, we present some numerical examples to show the effectiveness of this method.展开更多
In this paper, we consider solving the Helmholtz equation in the Cartesian domain , subject to homogeneous Dirichlet boundary condition, discretized with the Chebyshev pseudo-spectral method. The main purpose of this ...In this paper, we consider solving the Helmholtz equation in the Cartesian domain , subject to homogeneous Dirichlet boundary condition, discretized with the Chebyshev pseudo-spectral method. The main purpose of this paper is to present the formulation of a two-level decomposition scheme for decoupling the linear system obtained from the discretization into independent subsystems. This scheme takes advantage of the homogeneity property of the physical problem along one direction to reduce a 2D problem to several 1D problems via a block diagonalization approach and the reflexivity property along the second direction to decompose each of the 1D problems to two independent subproblems using a reflexive decomposition, effectively doubling the number of subproblems. Based on the special structure of the coefficient matrix of the linear system derived from the discretization and a reflexivity property of the second-order Chebyshev differentiation matrix, we show that the decomposed submatrices exhibits a similar property, enabling the system to be decomposed using reflexive decompositions. Explicit forms of the decomposed submatrices are derived. The decomposition not only yields more efficient algorithm but introduces coarse-grain parallelism. Furthermore, it preserves all eigenvalues of the original matrix.展开更多
文摘The Helmholtz SchrSdinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions presented by the Helmholtz-Schrodinger method. Thus, it can be used in similar cases where the amplitude of the electric field is the important quantity or eigenfunctions of the Schrodinger equation are needed for complicated quantum structures with hard wall boundary conditions.
基金This work was supported by Natural Science Foundation of Fujian under Grant A0310002the Excellent Young Teachers Program (EYTP) of the Ministry of Education of China.
文摘A Legendre spectral element/Laguerre coupled method is proposed to numerically solve the elliptic Helmholtz problem on the half line. Rigorous analysis is carried out to establish the convergence of the method. Several numerical examples are provided to confirm the theoretical results. The advantage of this method is demonstrated by a numerical comparison with the pure Laguerre method.
基金The Special Funds for Major State Basic Research Projects (1998030600) of China.
文摘1.Problems for electromagnetic scattering are of significant importance in many areas oftechnology.In this paper we discuss the scattering problem of electromagnetic wave incidentby using boundary element method associated with splines.The problem is modelled by aboundary value problem for the Helmholtz equation
基金supported by the National Natural Science Foundation of China(No.10871034)the Natural Science Foundation Project of Chongqing(No.CSTC20-10BB8270)+1 种基金the Air Force Office of Scientific Research(No.FA9550-08-1-0136)the National Science Foundation(No.OCE-0620464)
文摘This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples.
文摘In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-posed. We propose a regularization method for obtaining an approximate solution to the wave field on the unspecified boundary. We also give the convergence analysis and error estimate of the numerical algorithm. Finally, we present some numerical examples to show the effectiveness of this method.
文摘In this paper, we consider solving the Helmholtz equation in the Cartesian domain , subject to homogeneous Dirichlet boundary condition, discretized with the Chebyshev pseudo-spectral method. The main purpose of this paper is to present the formulation of a two-level decomposition scheme for decoupling the linear system obtained from the discretization into independent subsystems. This scheme takes advantage of the homogeneity property of the physical problem along one direction to reduce a 2D problem to several 1D problems via a block diagonalization approach and the reflexivity property along the second direction to decompose each of the 1D problems to two independent subproblems using a reflexive decomposition, effectively doubling the number of subproblems. Based on the special structure of the coefficient matrix of the linear system derived from the discretization and a reflexivity property of the second-order Chebyshev differentiation matrix, we show that the decomposed submatrices exhibits a similar property, enabling the system to be decomposed using reflexive decompositions. Explicit forms of the decomposed submatrices are derived. The decomposition not only yields more efficient algorithm but introduces coarse-grain parallelism. Furthermore, it preserves all eigenvalues of the original matrix.