This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagat...This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagate in the core region,and it decays sharply outside the core.The power absorption is lower and steeper in radius for blue-core mode.Regarding the effects of antenna geometry for blue-core mode,it shows that half helix antenna yields the strongest wave field and power absorption,while loop antenna yields the lowest.Moreover,near axis,for antennas with m=+1,the wave field increases with axial distance.In the core region,the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode.The total loading resistance is much lower for blue-core mode.These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.展开更多
In this work,we investigated the discharge characteristics and heating mechanisms of argon helicon plasma in different wave coupled modes with and without blue core.Spatially resolved spectroscopy and emission intensi...In this work,we investigated the discharge characteristics and heating mechanisms of argon helicon plasma in different wave coupled modes with and without blue core.Spatially resolved spectroscopy and emission intensity of argon atom and ion lines were measured via local optical emission spectroscopy,and electron density was measured experimentally by an RFcompensated Langmuir probe.The relation between the emission intensity and the electron density was obtained and the wavenumbers of helicon and’Trivelpiece-Gould’(TG)waves were calculated by solving the dispersion relation in wave modes.The results show that at least two distinct wave coupled modes appear in argon helicon plasma at increasing RF power,i.e.blue core(or BC)mode with a significant bright core of blue lights and a normal wave(NW)mode without blue core.The emission intensity of atom line 750.5 nm(lArⅠ750.5nm)is related to the electron density and tends to be saturated in wave coupled modes due to the neutral depletion,while the intensity of ion line 480.6 nm(IArⅡ480.6nm)is a function of the electron density and temperature,and increases dramatically as the RF power is increased.Theoretical analysis shows that TG waves are strongly damped at the plasma edge in NW and/or BC modes,while helicon waves are the dominant mechanism of power deposition or central heating of electrons in both modes.The formation of BC column mainly depends on the enhanced central electron heating by helicon waves rather than TG waves since the excitation of TG waves would be suppressed in this special anti-resonance region.展开更多
The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was reali...The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5×10^-3-10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B0of 6300 G.Ar HWP with electron density~10^18–10^20m^-3 and electron temperature~4–7 e V was produced at high B0 of 5100 G,with an RF power of 1500 W.Maximum Ar^+ion flux of 7.8×10^23m^-2s^-1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar^+ ion-beams of 40.1 eV are formed,which are supersonic(~3.1cs).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1×10^24N2/m^2 h.展开更多
Modification of exposure conditions downstream in the diffusion chamber has been performed in helicon antenna-excited helium plasma by adjusting the magnetic field(intensity and geometry).In the inductively coupled mo...Modification of exposure conditions downstream in the diffusion chamber has been performed in helicon antenna-excited helium plasma by adjusting the magnetic field(intensity and geometry).In the inductively coupled mode(H mode),a reduction in ion and heat fluxes is found with increasing magnetic field intensity,which is further explained by the more highly magnetized ions off-axis around the last magnetic field lines(LMFL).However,in helicon wave mode(W mode),the increase in magnetic field intensity can dramatically increase the ion and heat fluxes.Moreover,the effect of LMFL geometry on exposure conditions is investigated.In H mode with contracting LMFL,off-axis peaks of both plasma density and electron temperature profiles shift radially inwards,bringing about a beam with better radial uniformity and higher ion and heat fluxes.In W mode,although higher ion and heat fluxes can be achieved with suppressed plasma cross-field diffusion under converging LMFL,the poor radial uniformity and a small beam diameter will limit the size of samples suitable for plasma irradiation experiments.展开更多
Nitrogen-doped diamond-like carbon(N-DLC)films were synthesized by helicon wave plasma chemical vapor deposition(HWP-CVD).The mechanism of the plasma influence on the N-DLC structure and properties was revealed by the...Nitrogen-doped diamond-like carbon(N-DLC)films were synthesized by helicon wave plasma chemical vapor deposition(HWP-CVD).The mechanism of the plasma influence on the N-DLC structure and properties was revealed by the diagnosis of plasma.The effects of nitrogen doping on the mechanical and hydrophobicity properties of DLC films were studied.The change in the ratio of precursor gas flow reduces the concentration of film-forming groups,resulting in a decrease of growth rate with increasing nitrogen flow rate.The morphology and structure of N-DLC films were characterized by scanning probe microscopy,Raman spectroscopy,and X-ray photoemission spectroscopy.The mechanical properties and wettability of N-DLC were analyzed by an ultra-micro hardness tester and JC2000DM system.The results show that the content ratio of N^(+)and N_(2)^(+)is positively correlated with the mechanical properties and wettability of N-DLC films.The enhancement hardness and elastic modulus of N-DLC are attributed to the increase in sp3 carbon–nitrogen bond content in the film,reaching 26.5 GPa and 160 GPa respectively.Water contact measurement shows that the increase in the nitrogen-bond structure in N-DLC gives the film excellent hydrophobic properties,and the optimal water contact angle reaches 111.2°.It is shown that HWP technology has unique advantages in the modulation of functional nanomaterials.展开更多
We report an approach to the rapid, one-step, preparation of a variety of wide-bandgap silicon carbide/graphene nanosheet(Si C/GNSs) composites by using a high-density helicon wave plasma(HWP) source. The microstructu...We report an approach to the rapid, one-step, preparation of a variety of wide-bandgap silicon carbide/graphene nanosheet(Si C/GNSs) composites by using a high-density helicon wave plasma(HWP) source. The microstructure and morphology of the Si C/GNSs are characterized by using scanning electron microscopy(SEM), Raman spectroscopy, x-ray diffraction(XRD), x-ray photoelectron spectroscopy(XPS), and fluorescence(PL). The nucleation mechanism and the growth model are discussed. The existence of Si C and graphene structure are confirmed by XRD and Raman spectra.The electron excitation temperature is calculated by the intensity ratio method of optical emission spectroscopy. The main peak in the PL test is observed at 420 nm, with a corresponding bandgap of 2.95 e V that indicates the potential for broad application in blue light emission and ultraviolet light emission, field electron emission, and display devices.展开更多
A reactive helicon wave plasma(HWP)sputtering method is used for the deposition of tungsten nitride(WNx)thin films.N_(2)is introduced downstream in the diffusion chamber.The impacts of N_(2)on the Ar-HWP parameters,su...A reactive helicon wave plasma(HWP)sputtering method is used for the deposition of tungsten nitride(WNx)thin films.N_(2)is introduced downstream in the diffusion chamber.The impacts of N_(2)on the Ar-HWP parameters,such as ion energy distribution functions(IEDFs),electron energy probability functions(EEPFs),electron temperature(Te)and density(ne),are investigated.With the addition of N_(2),a decrease in electron density is observed due to the dissociative recombination of electrons with N_(2)^(+).The similar IEDF curves of Ar+and N_(2)^(+) indicate that the majority ofN_(2)^(+) stems from the charge transfer in the collision between Ar+and N_(2).Moreover,due to the collisions between electrons and N_(2)ions,EEPFs show a relatively lower Tewith a depletion in the high-energy tail.With increasing negative bias from 50 to 200 V,a phase transition from hexagonal WN to fcc-WN0.5is observed,together with an increase in the deposition rate and roughness.展开更多
A high growth rate fabrication of diamond-like carbon(DLC)films at room temperature was achieved by helicon wave plasma chemical vapor deposition(HWP-CVD)using Ar/CH4gas mixtures.The microstructure and morphology ...A high growth rate fabrication of diamond-like carbon(DLC)films at room temperature was achieved by helicon wave plasma chemical vapor deposition(HWP-CVD)using Ar/CH4gas mixtures.The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy.The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe.The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed.The growth rate of the DLC films reaches a maximum value of 54μm h^-1at the CH4flow rate of 85 sccm,which is attributed to the higher plasma density during the helicon wave plasma discharge.The CH and Hαradicals play an important role in the growth of DLC films.The results show that the Hαradicals are beneficial to the formation and stabilization of C=C bond from sp^2to sp^3.展开更多
Herein we report the successful preparation of silver(Ag)-decorated vertically oriented graphene sheets(Ag/VGs)via helicon wave plasma chemical vapor deposition(HWP-CVD)and radiofrequency plasma magnetron sputtering(R...Herein we report the successful preparation of silver(Ag)-decorated vertically oriented graphene sheets(Ag/VGs)via helicon wave plasma chemical vapor deposition(HWP-CVD)and radiofrequency plasma magnetron sputtering(RF-PMS).VGs were synthesized in a mixture of argon and methane(Ar/CH_(4))by HWP-CVD and then the Ag nanoparticles on the prepared VGs were modified using the RF-PMS system for different sputtering times and RF power levels.The morphology and structure of the Ag nanoparticles were characterized by scanning electron microscopy and the results revealed that Ag nanoparticles were evenly dispersed on the mesoporous wall of the VGs.X-ray diffraction results showed that the diameter of the Ag particles increased with the increase in Ag loading,and the average size was between 10.49 nm and 25.9 nm,consistent with the transmission electron microscopy results.Ag/VGs were investigated as effective electrocatalysts for use in an alkaline aqueous system.Due to the uniquely ordered and interconnected wall structure of VGs,the area of active sites increased with the Ag loading,giving the Ag/VGs a good performance in the oxygen evolution reaction.The double-layer capacitance(C_(dl))of the Ag/VGs under different Ag loadings were studied,and the results showed that the highest Ag content gave the best C_(dl)(1.04 mF cm^(-2)).Our results show that Ag/VGs are likely to be credible electrocatalytic materials.展开更多
Cubic boron nitride (c-BN) films were successfully grown on Si(100)substrates by a helicon wave plasma-assisted chemical vapor deposition technique.The lower limits of rf substrated bias voltage and plasma density for...Cubic boron nitride (c-BN) films were successfully grown on Si(100)substrates by a helicon wave plasma-assisted chemical vapor deposition technique.The lower limits of rf substrated bias voltage and plasma density for formation of a single phase c-BN film were 350V and 4.5×10 ̄(10) cm ̄(3),respectively. The grown c-BN films demonstrated a poor adhesion to the substrates. A postannealing treatment at 800℃ C in N_2 atmosphere was found very effective in relieving the compressive stress in the films which were thereby stabilized to improve the adhesion.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.92271113)the Fundamental Research Funds for the Central Universities(Grant No.2022CDJQY-003)+1 种基金Chongqing Entrepreneurship and Innovation Support Program for Overseas Returnees(Grant No.CX2022004)the Fund from Shanghai Engineering Research Center of Space Engine(Grant No.17DZ2280800).
文摘This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagate in the core region,and it decays sharply outside the core.The power absorption is lower and steeper in radius for blue-core mode.Regarding the effects of antenna geometry for blue-core mode,it shows that half helix antenna yields the strongest wave field and power absorption,while loop antenna yields the lowest.Moreover,near axis,for antennas with m=+1,the wave field increases with axial distance.In the core region,the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode.The total loading resistance is much lower for blue-core mode.These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.
基金National Natural Science Foundation of China(No.11975047)。
文摘In this work,we investigated the discharge characteristics and heating mechanisms of argon helicon plasma in different wave coupled modes with and without blue core.Spatially resolved spectroscopy and emission intensity of argon atom and ion lines were measured via local optical emission spectroscopy,and electron density was measured experimentally by an RFcompensated Langmuir probe.The relation between the emission intensity and the electron density was obtained and the wavenumbers of helicon and’Trivelpiece-Gould’(TG)waves were calculated by solving the dispersion relation in wave modes.The results show that at least two distinct wave coupled modes appear in argon helicon plasma at increasing RF power,i.e.blue core(or BC)mode with a significant bright core of blue lights and a normal wave(NW)mode without blue core.The emission intensity of atom line 750.5 nm(lArⅠ750.5nm)is related to the electron density and tends to be saturated in wave coupled modes due to the neutral depletion,while the intensity of ion line 480.6 nm(IArⅡ480.6nm)is a function of the electron density and temperature,and increases dramatically as the RF power is increased.Theoretical analysis shows that TG waves are strongly damped at the plasma edge in NW and/or BC modes,while helicon waves are the dominant mechanism of power deposition or central heating of electrons in both modes.The formation of BC column mainly depends on the enhanced central electron heating by helicon waves rather than TG waves since the excitation of TG waves would be suppressed in this special anti-resonance region.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2014GB106005 and 2010GB106000)National Natural Science Foundation of China(Nos.11505123 11435009 11375126)a Project funded by China Postdoctoral Science Foundation(No.156455)
文摘The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5×10^-3-10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B0of 6300 G.Ar HWP with electron density~10^18–10^20m^-3 and electron temperature~4–7 e V was produced at high B0 of 5100 G,with an RF power of 1500 W.Maximum Ar^+ion flux of 7.8×10^23m^-2s^-1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar^+ ion-beams of 40.1 eV are formed,which are supersonic(~3.1cs).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1×10^24N2/m^2 h.
基金supported by National Natural Science Foundation of China(No.11975163)the Shenzhen Clean Energy Research Institute
文摘Modification of exposure conditions downstream in the diffusion chamber has been performed in helicon antenna-excited helium plasma by adjusting the magnetic field(intensity and geometry).In the inductively coupled mode(H mode),a reduction in ion and heat fluxes is found with increasing magnetic field intensity,which is further explained by the more highly magnetized ions off-axis around the last magnetic field lines(LMFL).However,in helicon wave mode(W mode),the increase in magnetic field intensity can dramatically increase the ion and heat fluxes.Moreover,the effect of LMFL geometry on exposure conditions is investigated.In H mode with contracting LMFL,off-axis peaks of both plasma density and electron temperature profiles shift radially inwards,bringing about a beam with better radial uniformity and higher ion and heat fluxes.In W mode,although higher ion and heat fluxes can be achieved with suppressed plasma cross-field diffusion under converging LMFL,the poor radial uniformity and a small beam diameter will limit the size of samples suitable for plasma irradiation experiments.
基金supported by National Natural Science Foundation of China (Nos. 11975163, 12175160)Shenzhen Clean Energy Research Institute
文摘Nitrogen-doped diamond-like carbon(N-DLC)films were synthesized by helicon wave plasma chemical vapor deposition(HWP-CVD).The mechanism of the plasma influence on the N-DLC structure and properties was revealed by the diagnosis of plasma.The effects of nitrogen doping on the mechanical and hydrophobicity properties of DLC films were studied.The change in the ratio of precursor gas flow reduces the concentration of film-forming groups,resulting in a decrease of growth rate with increasing nitrogen flow rate.The morphology and structure of N-DLC films were characterized by scanning probe microscopy,Raman spectroscopy,and X-ray photoemission spectroscopy.The mechanical properties and wettability of N-DLC were analyzed by an ultra-micro hardness tester and JC2000DM system.The results show that the content ratio of N^(+)and N_(2)^(+)is positively correlated with the mechanical properties and wettability of N-DLC films.The enhancement hardness and elastic modulus of N-DLC are attributed to the increase in sp3 carbon–nitrogen bond content in the film,reaching 26.5 GPa and 160 GPa respectively.Water contact measurement shows that the increase in the nitrogen-bond structure in N-DLC gives the film excellent hydrophobic properties,and the optimal water contact angle reaches 111.2°.It is shown that HWP technology has unique advantages in the modulation of functional nanomaterials.
基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX202649)。
文摘We report an approach to the rapid, one-step, preparation of a variety of wide-bandgap silicon carbide/graphene nanosheet(Si C/GNSs) composites by using a high-density helicon wave plasma(HWP) source. The microstructure and morphology of the Si C/GNSs are characterized by using scanning electron microscopy(SEM), Raman spectroscopy, x-ray diffraction(XRD), x-ray photoelectron spectroscopy(XPS), and fluorescence(PL). The nucleation mechanism and the growth model are discussed. The existence of Si C and graphene structure are confirmed by XRD and Raman spectra.The electron excitation temperature is calculated by the intensity ratio method of optical emission spectroscopy. The main peak in the PL test is observed at 420 nm, with a corresponding bandgap of 2.95 e V that indicates the potential for broad application in blue light emission and ultraviolet light emission, field electron emission, and display devices.
基金National Natural Science Foundation of China(Nos.11975163,12175160)Shenzhen Clean Energy Research Institute。
文摘A reactive helicon wave plasma(HWP)sputtering method is used for the deposition of tungsten nitride(WNx)thin films.N_(2)is introduced downstream in the diffusion chamber.The impacts of N_(2)on the Ar-HWP parameters,such as ion energy distribution functions(IEDFs),electron energy probability functions(EEPFs),electron temperature(Te)and density(ne),are investigated.With the addition of N_(2),a decrease in electron density is observed due to the dissociative recombination of electrons with N_(2)^(+).The similar IEDF curves of Ar+and N_(2)^(+) indicate that the majority ofN_(2)^(+) stems from the charge transfer in the collision between Ar+and N_(2).Moreover,due to the collisions between electrons and N_(2)ions,EEPFs show a relatively lower Tewith a depletion in the high-energy tail.With increasing negative bias from 50 to 200 V,a phase transition from hexagonal WN to fcc-WN0.5is observed,together with an increase in the deposition rate and roughness.
基金supported by National Natural Science Foundation of China(Nos.11175126,11375126,11435009,11505123)the National Magnetic Confinement Fusion Program of China(Nos.2014GB106005,2010GB106000)+1 种基金a project funded by China Postdoctoral Science Foundationa project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A high growth rate fabrication of diamond-like carbon(DLC)films at room temperature was achieved by helicon wave plasma chemical vapor deposition(HWP-CVD)using Ar/CH4gas mixtures.The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy.The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe.The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed.The growth rate of the DLC films reaches a maximum value of 54μm h^-1at the CH4flow rate of 85 sccm,which is attributed to the higher plasma density during the helicon wave plasma discharge.The CH and Hαradicals play an important role in the growth of DLC films.The results show that the Hαradicals are beneficial to the formation and stabilization of C=C bond from sp^2to sp^3.
基金supported by National Natural Science Foundation of China(No.11975163)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Herein we report the successful preparation of silver(Ag)-decorated vertically oriented graphene sheets(Ag/VGs)via helicon wave plasma chemical vapor deposition(HWP-CVD)and radiofrequency plasma magnetron sputtering(RF-PMS).VGs were synthesized in a mixture of argon and methane(Ar/CH_(4))by HWP-CVD and then the Ag nanoparticles on the prepared VGs were modified using the RF-PMS system for different sputtering times and RF power levels.The morphology and structure of the Ag nanoparticles were characterized by scanning electron microscopy and the results revealed that Ag nanoparticles were evenly dispersed on the mesoporous wall of the VGs.X-ray diffraction results showed that the diameter of the Ag particles increased with the increase in Ag loading,and the average size was between 10.49 nm and 25.9 nm,consistent with the transmission electron microscopy results.Ag/VGs were investigated as effective electrocatalysts for use in an alkaline aqueous system.Due to the uniquely ordered and interconnected wall structure of VGs,the area of active sites increased with the Ag loading,giving the Ag/VGs a good performance in the oxygen evolution reaction.The double-layer capacitance(C_(dl))of the Ag/VGs under different Ag loadings were studied,and the results showed that the highest Ag content gave the best C_(dl)(1.04 mF cm^(-2)).Our results show that Ag/VGs are likely to be credible electrocatalytic materials.
文摘Cubic boron nitride (c-BN) films were successfully grown on Si(100)substrates by a helicon wave plasma-assisted chemical vapor deposition technique.The lower limits of rf substrated bias voltage and plasma density for formation of a single phase c-BN film were 350V and 4.5×10 ̄(10) cm ̄(3),respectively. The grown c-BN films demonstrated a poor adhesion to the substrates. A postannealing treatment at 800℃ C in N_2 atmosphere was found very effective in relieving the compressive stress in the films which were thereby stabilized to improve the adhesion.