Time series of counts observed in practice often exhibit overdispersion or underdispersion,zero inflation and even heavy-tailedness(the tail probabilities are non-negligible or decrease very slowly).In this article,we...Time series of counts observed in practice often exhibit overdispersion or underdispersion,zero inflation and even heavy-tailedness(the tail probabilities are non-negligible or decrease very slowly).In this article,we propose a more flexible integer-valued GARCH model based on the generalized Conway-Maxwell-Poisson distribution to model time series of counts,which offers a unified framework to deal with overdispersed or underdispersed,zero-inflated and heavy-tailed time series of counts.This distribution generalizes the Conway-Maxwell-Poisson distribution by adding a parameter,which plays the role of controlling the length of the tail.We investigate basic properties of the proposed model and obtain estimators of parameters via the conditional maximum likelihood method.The numerical results with both simulated and real data confirm the good performance of the proposed model.展开更多
This study introduces the type-I heavy-tailed Burr XII(TIHTBXII)distribution,a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data character...This study introduces the type-I heavy-tailed Burr XII(TIHTBXII)distribution,a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data characterized by skewness,heavy tails,and diverse hazard behaviors.We meticulously develop the TIHTBXII’s mathematical foundations,including its probability density function(PDF),cumulative distribution function(CDF),and essential statistical properties,crucial for theoretical understanding and practical application.A comprehensive Monte Carlo simulation evaluates four parameter estimation methods:maximum likelihood(MLE),maximum product spacing(MPS),least squares(LS),and weighted least squares(WLS).The simulation results consistently show that as sample sizes increase,the Bias and RMSE of all estimators decrease,with WLS and LS often demonstrating superior and more stable performance.Beyond theoretical development,we present a practical application of the TIHTBXII distribution in constructing a group acceptance sampling plan(GASP)for truncated life tests.This application highlights how the TIHTBXII model can optimize quality control decisions by minimizing the average sample number(ASN)while effectively managing consumer and producer risks.Empirical validation using real-world datasets,including“Active Repair Duration,”“Groundwater Contaminant Measurements,”and“Dominica COVID-19 Mortality,”further demonstrates the TIHTBXII’s superior fit compared to existing models.Our findings confirm the TIHTBXII distribution as a powerful and reliable alternative for accurately modeling complex data in fields such as reliability engineering and quality assessment,leading to more informed and robust decision-making.展开更多
This paper provides a robust test of predictability under the predictive regression model with possible heavy-tailed innovations assumption,in which the predictive variable is persistent and its innovations are highly...This paper provides a robust test of predictability under the predictive regression model with possible heavy-tailed innovations assumption,in which the predictive variable is persistent and its innovations are highly correlated with returns.To this end,we propose a robust test which can capture empirical phenomena such as heavy tails,stationary,and local to unity.Moreover,we develop related asymptotic results without the second-moment assumption between the predictive variable and returns.To make the proposed test reasonable,we propose a generalized correlation and provide theoretical support.To illustrate the applicability of the test,we perform a simulation study for the impact of heavy-tailed innovations on predictability,as well as direct and/or indirect implementation of heavy-tailed innovations to predictability via the unit root phenomenon.Finally,we provide an empirical study for further illustration,to which the proposed test is applied to a U.S.equity data set.展开更多
Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussia...Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussian distribution.In some cases,this assumption no longer holds and the performance of the traditional SLAM algorithms declines.In this paper,we present a robust SLAM algorithm based on variational Bayes method by modelling the observation noise as inverse-Wishart distribution with "harmonic mean".Besides,cubature integration is utilized to solve the problem of nonlinear system.The proposed algorithm can effectively solve the problem of filtering divergence for traditional filtering algorithm when suffering the time-variant observation noise,especially for heavy-tai led noise.To validate the algorithm,we compare it with other t raditional filtering algorithms.The results show the effectiveness of the algorithm.展开更多
This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and F...This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.展开更多
In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating acco...In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.展开更多
The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in ...The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in financial sciences.A specific sub-model form of our suggested family,named as a new extended heavy-tailed Weibull distribution is examined in detail.Some basic characterizations,including quantile function and raw moments have been derived.The estimates of the unknown parameters of the new model are obtained via the maximum likelihood estimation method.To judge the performance of the maximum likelihood estimators,a simulation analysis is performed in detail.Furthermore,some important actuarial measures such as value at risk and tail value at risk are also computed.A simulation study based on these actuarial measures is conducted to exhibit empirically that the proposed model is heavy-tailed.The usefulness of the proposed family is illustrated by means of an application to a heavy-tailed insurance loss data set.The practical application shows that the proposed model is more flexible and efficient than the other six competing models including(i)the two-parameter models Weibull,Lomax and Burr-XII distributions(ii)the three-parameter distributions Marshall-Olkin Weibull and exponentiated Weibull distributions,and(iii)a well-known four-parameter Kumaraswamy Weibull distribution.展开更多
This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random...This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random variables, and {N(t),t≥0} is a counting process of non-negative integer-valued random variables, independent of {X_n,n≥1}. In this paper, under the suppose F∈G, which is a bigger heavy-tailed class than C, proved large deviation results for sums of random variables.展开更多
This paper considers the uniform asymptotic tail behavior of a Poisson shot noise process with some dependent and heavy-tailed shocks. When the shocks are bivariate upper tail asymptotic independent nonnegative random...This paper considers the uniform asymptotic tail behavior of a Poisson shot noise process with some dependent and heavy-tailed shocks. When the shocks are bivariate upper tail asymptotic independent nonnegative random variables with long-tailed and dominatedly varying tailed distributions, and the shot noise function has both positive lower and upper bounds, a uniform asymptotic formula for the tail probability of the process has been established.Furthermore, when the shocks have continuous and consistently varying tailed distributions, the positive lower-bound condition on the shot noise function can be removed. For the case that the shot noise function is not necessarily upper-bounded, a uniform asymptotic result is also obtained when the shocks follow a pairwise negatively quadrant dependence structure.展开更多
A simple stochastic mechanism that produces exact and approximate power-law distributions is presented. The model considers radially symmetric Gaussian, exponential and power-law functions inn= 1, 2, 3 dimensions. Ran...A simple stochastic mechanism that produces exact and approximate power-law distributions is presented. The model considers radially symmetric Gaussian, exponential and power-law functions inn= 1, 2, 3 dimensions. Randomly sampling these functions with a radially uniform sampling scheme produces heavy-tailed distributions. For two-dimensional Gaussians and one-dimensional exponential functions, exact power-laws with exponent –1 are obtained. In other cases, densities with an approximate power-law behaviour close to the origin arise. These densities are analyzed using Padé approximants in order to show the approximate power-law behaviour. If the sampled function itself follows a power-law with exponent –α, random sampling leads to densities that also follow an exact power-law, with exponent -n/a – 1. The presented mechanism shows that power-laws can arise in generic situations different from previously considered specialized systems such as multi-particle systems close to phase transitions, dynamical systems at bifurcation points or systems displaying self-organized criticality. Thus, the presented mechanism may serve as an alternative hypothesis in system identification problems.展开更多
In this paper, we consider median unbiased estimation of bivariate predictive regression models with non-normal, heavy-tailed or heteroscedastic errors. We construct confidence intervals and median unbiased estimator ...In this paper, we consider median unbiased estimation of bivariate predictive regression models with non-normal, heavy-tailed or heteroscedastic errors. We construct confidence intervals and median unbiased estimator for the parameter of interest. We show that the proposed estimator has better predictive potential than the usual least squares estimator via simulation. An empirical application to finance is given. And a possible extension of the estimation procedure to cointegration models is also described.展开更多
In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. A...In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. Asymptotic formulas of the ruin probability are obtained when the claim size distributions are heavy-tailed.展开更多
This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random ...This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered a-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE) with tempered a-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered a-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered a-stable waiting times is more efficient in reproducing the observed behavior.展开更多
In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-...In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-negative integer-valued random variables, and {Xn; n ≥ 1} are a sequence of independent non-negative random variables independent of {N(t); t ≥ 0}. These results extend and improve some known conclusions.展开更多
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus...In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.展开更多
For any given positive integer m, let X_i, 1 ≤ i ≤ m be m independent random variables with distributions F_i, 1 ≤ i ≤ m. When all the summands are nonnegative and at least one of them is heavy-tailed, we prove th...For any given positive integer m, let X_i, 1 ≤ i ≤ m be m independent random variables with distributions F_i, 1 ≤ i ≤ m. When all the summands are nonnegative and at least one of them is heavy-tailed, we prove that the lower limit of the ratio ■equals 1 as x →∞. When the summands are real-valued, we also obtain some asymptotic results for the tail probability of the sums. Besides, a local version as well as a density version of the above results is also presented.展开更多
Some equivalent conditions on the classes of lighted-tailed and heavily heavy-tailed and lightly heavy-tailed d.f.s are introduced.The limit behavior of xα(x) and e λx(x) are discussed.Some properties of the subcla...Some equivalent conditions on the classes of lighted-tailed and heavily heavy-tailed and lightly heavy-tailed d.f.s are introduced.The limit behavior of xα(x) and e λx(x) are discussed.Some properties of the subclass DKc and subclass DK 1 are obtained.展开更多
This paper considers the one-and two-dimensional risk models with a non-stationary claim-number process.Under the assumption that the claim-number process satisfies the large deviations principle,the uniform asymptoti...This paper considers the one-and two-dimensional risk models with a non-stationary claim-number process.Under the assumption that the claim-number process satisfies the large deviations principle,the uniform asymptotics for the finite-time ruin probability of a one-dimensional risk model are obtained for the strongly subexponential claim sizes.Further,as an application of the result of onedimensional risk model,we derive the uniform asymptotics for a kind of finite-time ruin probability in a two dimensional risk model sharing a common claim-number process which satisfies the large deviations principle.展开更多
Many heuristic search methods exhibit a remarkable variability in the time required to solve some particular problem instances. Their cost distributions are often heavy-tailed. It has been demonstrated that, in most c...Many heuristic search methods exhibit a remarkable variability in the time required to solve some particular problem instances. Their cost distributions are often heavy-tailed. It has been demonstrated that, in most cases, rapid restart (RR) method can prominently suppress the heavy-tailed nature of the instances and improve computation efficiency. However, it is usually time-consuming to check whether an algorithm on a specific instance is heavy-tailed or not. Moreover, if the heavy-tailed distribution is confirmed and the RR method is relevant, an optimal RR threshold should be chosen to facilitate the RR mechanism. In this paper, an approximate approach is proposed to quickly check whether an algorithm on a specific instance is heavy-tailed or not. The method is realized by means of calculating the maximal Lyapunov exponent of its generic running trace. Then a statistical formula to estimate the optimal RR threshold is educed. The method is based on common nonparametric estimation, e.g., Kernel estimation. Two heuristic methods are selected to verify our method. The experimental results are consistent with the theoretical consideration perfectly.展开更多
Let Y_(t) be an autoregressive process with order one,i.e.,Y_(t)=μ+ϕnY_(t-1)+εt,where fεtg is a heavy tailed general GARCH noise with tail indexα.Letϕn be the least squares estimator(LSE)ofϕn.Forμ=0 andα<2,it...Let Y_(t) be an autoregressive process with order one,i.e.,Y_(t)=μ+ϕnY_(t-1)+εt,where fεtg is a heavy tailed general GARCH noise with tail indexα.Letϕn be the least squares estimator(LSE)ofϕn.Forμ=0 andα<2,it is shown by Zhang and Ling(2015)thatϕn is inconsistent when Y_(t) is stationary(i.e.,ϕn.,ϕ<1),however,Chan and Zhang(2010)showed thatϕn is still consistent with convergence rate n when Y_(t) is a unit-root process(i.e.,ϕn=1)and fεtg is a GARCH(1,1)noise.There is a gap between the stationary and nonstationary cases.In this paper,two important issues will be considered:(1)what about the nearly unit root case?(2)When canϕbe estimated consistently by the LSE?We show that whenϕn=1-c/n,then bϕn converges to a functional of stable process with convergence rate n.Further,we show that if limn!1 kn(1-ϕn)=c for a positive constant c,then kn(ϕn-ϕ)converges to a functional of two stable variables with tail indexα/2,which means thatϕn can be estimated consistently only when kn!1.展开更多
基金the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Teacher’s Research Support Project Foundation of Jiangsu Normal University(No.21XFRS022)National Natural Science Foundation of China(Nos.12271206,11871027)Natural Science Foundation of Jilin Province(No.20210101143JC).
文摘Time series of counts observed in practice often exhibit overdispersion or underdispersion,zero inflation and even heavy-tailedness(the tail probabilities are non-negligible or decrease very slowly).In this article,we propose a more flexible integer-valued GARCH model based on the generalized Conway-Maxwell-Poisson distribution to model time series of counts,which offers a unified framework to deal with overdispersed or underdispersed,zero-inflated and heavy-tailed time series of counts.This distribution generalizes the Conway-Maxwell-Poisson distribution by adding a parameter,which plays the role of controlling the length of the tail.We investigate basic properties of the proposed model and obtain estimators of parameters via the conditional maximum likelihood method.The numerical results with both simulated and real data confirm the good performance of the proposed model.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-DDRSP2501).
文摘This study introduces the type-I heavy-tailed Burr XII(TIHTBXII)distribution,a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data characterized by skewness,heavy tails,and diverse hazard behaviors.We meticulously develop the TIHTBXII’s mathematical foundations,including its probability density function(PDF),cumulative distribution function(CDF),and essential statistical properties,crucial for theoretical understanding and practical application.A comprehensive Monte Carlo simulation evaluates four parameter estimation methods:maximum likelihood(MLE),maximum product spacing(MPS),least squares(LS),and weighted least squares(WLS).The simulation results consistently show that as sample sizes increase,the Bias and RMSE of all estimators decrease,with WLS and LS often demonstrating superior and more stable performance.Beyond theoretical development,we present a practical application of the TIHTBXII distribution in constructing a group acceptance sampling plan(GASP)for truncated life tests.This application highlights how the TIHTBXII model can optimize quality control decisions by minimizing the average sample number(ASN)while effectively managing consumer and producer risks.Empirical validation using real-world datasets,including“Active Repair Duration,”“Groundwater Contaminant Measurements,”and“Dominica COVID-19 Mortality,”further demonstrates the TIHTBXII’s superior fit compared to existing models.Our findings confirm the TIHTBXII distribution as a powerful and reliable alternative for accurately modeling complex data in fields such as reliability engineering and quality assessment,leading to more informed and robust decision-making.
基金The research of WONG Hsin-Chieh is partially supported by the NSTC(111-2118-M-305-004-MY2)the research of PANG Tian-xiao is partially supported by the National Social Science Foundation of China(21BTJ067)。
文摘This paper provides a robust test of predictability under the predictive regression model with possible heavy-tailed innovations assumption,in which the predictive variable is persistent and its innovations are highly correlated with returns.To this end,we propose a robust test which can capture empirical phenomena such as heavy tails,stationary,and local to unity.Moreover,we develop related asymptotic results without the second-moment assumption between the predictive variable and returns.To make the proposed test reasonable,we propose a generalized correlation and provide theoretical support.To illustrate the applicability of the test,we perform a simulation study for the impact of heavy-tailed innovations on predictability,as well as direct and/or indirect implementation of heavy-tailed innovations to predictability via the unit root phenomenon.Finally,we provide an empirical study for further illustration,to which the proposed test is applied to a U.S.equity data set.
基金the National Natural Science Foundation of China(No.61803260)。
文摘Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussian distribution.In some cases,this assumption no longer holds and the performance of the traditional SLAM algorithms declines.In this paper,we present a robust SLAM algorithm based on variational Bayes method by modelling the observation noise as inverse-Wishart distribution with "harmonic mean".Besides,cubature integration is utilized to solve the problem of nonlinear system.The proposed algorithm can effectively solve the problem of filtering divergence for traditional filtering algorithm when suffering the time-variant observation noise,especially for heavy-tai led noise.To validate the algorithm,we compare it with other t raditional filtering algorithms.The results show the effectiveness of the algorithm.
基金Supported by the Natural Science Foundation of the Education Department of Anhui Province(0505101)
文摘This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.
基金supported by the National Natural Science Foundation of China(11101451)Ph.D.Programs Foundation of Ministry of Education of China(20110191110033)
文摘In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.
文摘The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in financial sciences.A specific sub-model form of our suggested family,named as a new extended heavy-tailed Weibull distribution is examined in detail.Some basic characterizations,including quantile function and raw moments have been derived.The estimates of the unknown parameters of the new model are obtained via the maximum likelihood estimation method.To judge the performance of the maximum likelihood estimators,a simulation analysis is performed in detail.Furthermore,some important actuarial measures such as value at risk and tail value at risk are also computed.A simulation study based on these actuarial measures is conducted to exhibit empirically that the proposed model is heavy-tailed.The usefulness of the proposed family is illustrated by means of an application to a heavy-tailed insurance loss data set.The practical application shows that the proposed model is more flexible and efficient than the other six competing models including(i)the two-parameter models Weibull,Lomax and Burr-XII distributions(ii)the three-parameter distributions Marshall-Olkin Weibull and exponentiated Weibull distributions,and(iii)a well-known four-parameter Kumaraswamy Weibull distribution.
文摘This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random variables, and {N(t),t≥0} is a counting process of non-negative integer-valued random variables, independent of {X_n,n≥1}. In this paper, under the suppose F∈G, which is a bigger heavy-tailed class than C, proved large deviation results for sums of random variables.
基金Supported by the National Social Science Fund of China (Grant No.22BTJ060)the Humanities and Social Sciences Foundation of the Ministry of Education of China (Grant No.20YJA910006)+3 种基金the Natural Science Foundation of Jiangsu Province (Grant No.BK20201396)the Natural Science Foundation of the Jiangsu Higher Education Institutions (Grant No.19KJA180003)the Grant from the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No.HKU17306220)the 333 High Level Talent Training Project of Jiangsu Province。
文摘This paper considers the uniform asymptotic tail behavior of a Poisson shot noise process with some dependent and heavy-tailed shocks. When the shocks are bivariate upper tail asymptotic independent nonnegative random variables with long-tailed and dominatedly varying tailed distributions, and the shot noise function has both positive lower and upper bounds, a uniform asymptotic formula for the tail probability of the process has been established.Furthermore, when the shocks have continuous and consistently varying tailed distributions, the positive lower-bound condition on the shot noise function can be removed. For the case that the shot noise function is not necessarily upper-bounded, a uniform asymptotic result is also obtained when the shocks follow a pairwise negatively quadrant dependence structure.
文摘A simple stochastic mechanism that produces exact and approximate power-law distributions is presented. The model considers radially symmetric Gaussian, exponential and power-law functions inn= 1, 2, 3 dimensions. Randomly sampling these functions with a radially uniform sampling scheme produces heavy-tailed distributions. For two-dimensional Gaussians and one-dimensional exponential functions, exact power-laws with exponent –1 are obtained. In other cases, densities with an approximate power-law behaviour close to the origin arise. These densities are analyzed using Padé approximants in order to show the approximate power-law behaviour. If the sampled function itself follows a power-law with exponent –α, random sampling leads to densities that also follow an exact power-law, with exponent -n/a – 1. The presented mechanism shows that power-laws can arise in generic situations different from previously considered specialized systems such as multi-particle systems close to phase transitions, dynamical systems at bifurcation points or systems displaying self-organized criticality. Thus, the presented mechanism may serve as an alternative hypothesis in system identification problems.
基金The NNSF(10571073)of china,and 985 project of Jilin University.
文摘In this paper, we consider median unbiased estimation of bivariate predictive regression models with non-normal, heavy-tailed or heteroscedastic errors. We construct confidence intervals and median unbiased estimator for the parameter of interest. We show that the proposed estimator has better predictive potential than the usual least squares estimator via simulation. An empirical application to finance is given. And a possible extension of the estimation procedure to cointegration models is also described.
基金Surported by the Third Stage of 211 ProjectInnovative Talent Training Project of S-09110the Chongqing University Postgraduates’ Science and Innovation Fund (200911B1B0110327)
文摘In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. Asymptotic formulas of the ruin probability are obtained when the claim size distributions are heavy-tailed.
文摘This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered a-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE) with tempered a-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered a-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered a-stable waiting times is more efficient in reproducing the observed behavior.
基金Supported by the Science Foundation of the Education Committee of Anhui Province(0505101).
文摘In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-negative integer-valued random variables, and {Xn; n ≥ 1} are a sequence of independent non-negative random variables independent of {N(t); t ≥ 0}. These results extend and improve some known conclusions.
文摘In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.
基金Supported by the National Natural Science Foundation of China(no.11401415)Tian Yuan Foundation(nos.11226208 and 11426139)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(no.13KJB110025)Postdoctoral Research Program of Jiangsu Province of China(no.1402111C)Jiangsu Overseas Research and Training Program for Prominent University Young and Middle-aged Teachers and Presidents
文摘For any given positive integer m, let X_i, 1 ≤ i ≤ m be m independent random variables with distributions F_i, 1 ≤ i ≤ m. When all the summands are nonnegative and at least one of them is heavy-tailed, we prove that the lower limit of the ratio ■equals 1 as x →∞. When the summands are real-valued, we also obtain some asymptotic results for the tail probability of the sums. Besides, a local version as well as a density version of the above results is also presented.
基金Supported by the National Natural Science Foundation of China( 1 0 2 71 0 87)
文摘Some equivalent conditions on the classes of lighted-tailed and heavily heavy-tailed and lightly heavy-tailed d.f.s are introduced.The limit behavior of xα(x) and e λx(x) are discussed.Some properties of the subclass DKc and subclass DK 1 are obtained.
基金Supported by the 333 High Level Talent Training Project of Jiangsu Provincethe National Natural Science Foundation of China(71871046)Science and Technology Projects of Sichuan Province(2021YFQ0007)。
文摘This paper considers the one-and two-dimensional risk models with a non-stationary claim-number process.Under the assumption that the claim-number process satisfies the large deviations principle,the uniform asymptotics for the finite-time ruin probability of a one-dimensional risk model are obtained for the strongly subexponential claim sizes.Further,as an application of the result of onedimensional risk model,we derive the uniform asymptotics for a kind of finite-time ruin probability in a two dimensional risk model sharing a common claim-number process which satisfies the large deviations principle.
文摘Many heuristic search methods exhibit a remarkable variability in the time required to solve some particular problem instances. Their cost distributions are often heavy-tailed. It has been demonstrated that, in most cases, rapid restart (RR) method can prominently suppress the heavy-tailed nature of the instances and improve computation efficiency. However, it is usually time-consuming to check whether an algorithm on a specific instance is heavy-tailed or not. Moreover, if the heavy-tailed distribution is confirmed and the RR method is relevant, an optimal RR threshold should be chosen to facilitate the RR mechanism. In this paper, an approximate approach is proposed to quickly check whether an algorithm on a specific instance is heavy-tailed or not. The method is realized by means of calculating the maximal Lyapunov exponent of its generic running trace. Then a statistical formula to estimate the optimal RR threshold is educed. The method is based on common nonparametric estimation, e.g., Kernel estimation. Two heuristic methods are selected to verify our method. The experimental results are consistent with the theoretical consideration perfectly.
基金supported by the National Natural Science Foundation of China(11771390, 12171427)ZPNSFC(LZ21A010002)+2 种基金Fundamental Research Funds for the Central Universities (2021XZZX002)supported by Natural Science Foundation of Fujian Province(2020J01794)Fujian Key Laboratory of Granular Computing and Applications(Minnan Normal University)
文摘Let Y_(t) be an autoregressive process with order one,i.e.,Y_(t)=μ+ϕnY_(t-1)+εt,where fεtg is a heavy tailed general GARCH noise with tail indexα.Letϕn be the least squares estimator(LSE)ofϕn.Forμ=0 andα<2,it is shown by Zhang and Ling(2015)thatϕn is inconsistent when Y_(t) is stationary(i.e.,ϕn.,ϕ<1),however,Chan and Zhang(2010)showed thatϕn is still consistent with convergence rate n when Y_(t) is a unit-root process(i.e.,ϕn=1)and fεtg is a GARCH(1,1)noise.There is a gap between the stationary and nonstationary cases.In this paper,two important issues will be considered:(1)what about the nearly unit root case?(2)When canϕbe estimated consistently by the LSE?We show that whenϕn=1-c/n,then bϕn converges to a functional of stable process with convergence rate n.Further,we show that if limn!1 kn(1-ϕn)=c for a positive constant c,then kn(ϕn-ϕ)converges to a functional of two stable variables with tail indexα/2,which means thatϕn can be estimated consistently only when kn!1.