Ductile iron represents an optimal solution for saving material and costs in producing large heavy-section castings in the energy sector.It aimed to investigate the influence of very long solidification time(3,10 and ...Ductile iron represents an optimal solution for saving material and costs in producing large heavy-section castings in the energy sector.It aimed to investigate the influence of very long solidification time(3,10 and 20 h)in different casting zones(casting center and transition zone)on the microstructure and mechanical properties of non-standard heavy-section ferritic ductile iron(EN-GJS-400-15)castings.The different solidification conditions significantly influenced the microstructure(graphite and ferrous matrix).The extent of phenomena such as degenerate graphite,solidification defects,hard carbides,and intergranular pearlitic areas and the microstructural coarsening were proportional to the solidification time and attributable to the combined effect of limited undercooling,solid solution diffusion mechanisms,and segregation phenomena.For comparable solidification time,the transition zone was characterized by larger nodules,comparable nodularity,and lower nodule count than the casting center due to more effective diffusion phenomena during cooling.Moreover,the lower segregation phenomena in the transition zone reduced the amount of pearlite and carbides in the intercellular zones.Hardness was only slightly influenced by the different solidification conditions and did not represent a reliable indicator of the microstructural inhomogeneities.These results are essential to refine casting simulations for producing large ferritic ductile iron castings,considering the wide microstructural variability within non-standard heavy-section castings caused by significantly different solidification conditions.展开更多
文摘Ductile iron represents an optimal solution for saving material and costs in producing large heavy-section castings in the energy sector.It aimed to investigate the influence of very long solidification time(3,10 and 20 h)in different casting zones(casting center and transition zone)on the microstructure and mechanical properties of non-standard heavy-section ferritic ductile iron(EN-GJS-400-15)castings.The different solidification conditions significantly influenced the microstructure(graphite and ferrous matrix).The extent of phenomena such as degenerate graphite,solidification defects,hard carbides,and intergranular pearlitic areas and the microstructural coarsening were proportional to the solidification time and attributable to the combined effect of limited undercooling,solid solution diffusion mechanisms,and segregation phenomena.For comparable solidification time,the transition zone was characterized by larger nodules,comparable nodularity,and lower nodule count than the casting center due to more effective diffusion phenomena during cooling.Moreover,the lower segregation phenomena in the transition zone reduced the amount of pearlite and carbides in the intercellular zones.Hardness was only slightly influenced by the different solidification conditions and did not represent a reliable indicator of the microstructural inhomogeneities.These results are essential to refine casting simulations for producing large ferritic ductile iron castings,considering the wide microstructural variability within non-standard heavy-section castings caused by significantly different solidification conditions.