The phase transformation of hydroxyapatite (HAP, Ca10(PO4)6(OH)2) to the beta tricalcium phosphate phase (β-TCP, β-Ca3(PO4)2) at 1100°C is well known. However, in the case of human tooth, the HAP phase transfor...The phase transformation of hydroxyapatite (HAP, Ca10(PO4)6(OH)2) to the beta tricalcium phosphate phase (β-TCP, β-Ca3(PO4)2) at 1100°C is well known. However, in the case of human tooth, the HAP phase transformation is still an open area. For example, the CaO phase has sometimes been reported in the set of phases that make up the teeth. In this study, physical changes of human teeth when subjected to heat treatment in inert atmosphere (argon) were studied. The results were compared with those obtained in air atmosphere, from room temperature (25°C) up to 1200°C. Morphological changes were analyzed by light and scanning electron microscopy (SEM). The HAP to β-TCP phase transformation was followed in powder samples by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Heating of teeth results in the removal of organic material and structural water before the HAP to β-TCP phase transformation, the increment in hardness and the induced crystal growth. The percentage of the phases, crystal growth and lattice parameter variations as a function of temperature was quantified by Rietveld analysis. The black color was observed in dentin heated under argon atmosphere. Differences in expansivity produce fractures in dentin at 300°C in argon and at 400°C in air. In dentin, the coexistence of the HAP and β-TCP phases was observed after 800°C in argon and after 600°C in air;in enamel it was observed at 600°C in argon compared with 400°C in air. In general, the role played by the argon atmosphere during the thermal treatment of the teeth is to retard the processes observed in air.展开更多
The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-...The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions.展开更多
Magnetic hyperthermia(MH)utilizes magnetic iron oxide nanomaterials(MIONs)to generate nano-scale heat and boost reactive oxygen species production within cells exposed to an external alternating magnetic field.Unlike ...Magnetic hyperthermia(MH)utilizes magnetic iron oxide nanomaterials(MIONs)to generate nano-scale heat and boost reactive oxygen species production within cells exposed to an external alternating magnetic field.Unlike conventional thermal ablation therapies that produce heat on a macro-scale,MIONs act as point source of heat inside cells,which enables MIONs-mediated MH to modulate cellular functions and fate with precision in real-time.With key benefits such as deep tissue penetration and the ability to regulate processes in a temporal-spatial and quantifiable manner,MH is now emerging as a new cancer therapy.Most intriguing is the apparent ability for MH to alter specific biological pathways associated with an anti-tumor immune response.Research efforts are now accelerating to render MH applicable to the clinical setting,with the objective of supporting the treatment of common cancers such as hepatocellular carcinoma(HCC).In this perspective paper,we highlight the recent progress made in MH,with a particular focus on its ability to manipulate anti-tumor immune mechanisms and the therapeutic advantages demonstrated thus far for HCC.We explore the current challenges in this field,and provide our perspective on the outlook for MH and its role in cancer treatment.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,t...By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,the interior heating power would increase the working temperature and fire risk,which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties.In this work,we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk,REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload,indicating a 12.0℃lower temperature than the RC film under the same conditions in the outdoor experiment.In the nighttime with a low workload,RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime.In addition,our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise,thus mitigating fire risks.Thus,our design shows a promising solution for the thermal management of outdoor devices,delivering outstanding performance in both heat dissipation and flame retardancy.展开更多
Anti-dumping investigations and measures Last year 40 initiations of new anti-dumping investigations relating to the textile and apparel sector were made on China’s exports.The number of initiations remained unchang...Anti-dumping investigations and measures Last year 40 initiations of new anti-dumping investigations relating to the textile and apparel sector were made on China’s exports.The number of initiations remained unchanged compared with the numbers reported for 2009.The Members reporting the highest number of new initiations during Jan.- Dec. 2010 were the United States,reporting 11 new initiations,followed by India, reporting 7 new initiations,the European Union and Turkey(5 each).Concerning reporting the highest number of new initiations on China’s exports in recent years,India came at the top of the list.The data reported above are taken from the report of the PRC Ministry of Commerce.展开更多
A survey conducted by China’s General Administration of Quality Supervision,Inspection,and Quarantine finds that technical trade bar-riers from overseas cost Chinese exporters 57.
A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole ...A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.展开更多
The evolutionary process and intermetallic compounds of Cu/A1 couples during isothermal heating at a constant bonding tem- perature of 550℃ were investigated in this paper. The interracial morphologies and microstruc...The evolutionary process and intermetallic compounds of Cu/A1 couples during isothermal heating at a constant bonding tem- perature of 550℃ were investigated in this paper. The interracial morphologies and microstructures were examined by optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, and X-ray diffraction. The results suggest that bonding is not achieved between Cu and A1 at 550℃ in 10 min due to undamaged oxide films. Upon increasing the bonding time from 15 to 25 min, however, metallurgical bonding is obtained in these samples, and the thickness of the reactive zone varies with holding time. In the interfacial region, the final microstructure consists of Cu9A14, CuAl, CuA12, and ct-A1 + CuAl2. Furthermore, these results provide new insights into the mechanism of the imerfacial reaction between Cu and A1. Microhardness measurements show that the chemical composition exerts a signifi- cant influence on the mechanical properties of Cu/A1 couples.展开更多
Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering applic...Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.展开更多
In this study,we present three experiments carried out at the EISCAT(European Incoherent Scatter Scientific Association)heating facility on October 29 and 30,2015.The results from the first experiment showed overshoot...In this study,we present three experiments carried out at the EISCAT(European Incoherent Scatter Scientific Association)heating facility on October 29 and 30,2015.The results from the first experiment showed overshoot during the O-mode heating period.The second experiment,which used cold-start X-mode heating,showed the generation of parametric decay instability,whereas overshoot was not observed.The third experiment used power-stepped X-mode heating with noticeable O-mode wave leakage.Parametric decay instability and oscillating two-stream instability were generated at the O-mode reflection height without the overshoot effect,which implies suppression of the thermal parametric instability with X-mode heating.We propose that the electron temperature increased because X-mode heating below the upper hybrid height decreased the growth rate of the thermal parametric instability.展开更多
A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the ne...A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.展开更多
One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines. CSIRO researchers have developed a number of polymer gels suitable for controlling beatings...One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines. CSIRO researchers have developed a number of polymer gels suitable for controlling beatings in coal mines. These gels were developed to meet strict selection criteria including easy preparation, no or low toxicity, controllable gelation time, adaptable to mine water chemistry, adjustable viscosity, relatively long gel life, thermally and chemically stable and low cost. The HPAM-Aluminum Citrate gel system was identified to be the most favourable gel system for fire suppression in under- ground coal mines. These gels can be applied to the areas undergoing coal heating or gas leakage at a controllable gelation time and impermeable gel barriers can be formed in the areas to block ingress of air.展开更多
The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills i...The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.展开更多
Using monthly reanalysis data of the National Center for Environmental Research/National Center for Atmospheric Research(NCEP/NCAR) and Objectively Analyzed Air-Sea Heat Flux(OAFlux) gathered during the winter,singula...Using monthly reanalysis data of the National Center for Environmental Research/National Center for Atmospheric Research(NCEP/NCAR) and Objectively Analyzed Air-Sea Heat Flux(OAFlux) gathered during the winter,singular vector decomposition(SVD) analysis was conducted to reveal the coupled mode between the Kuroshio marine heating anomaly and the geopotential height at 500 hPa(Z500) over the North Pacific.The first SVD mode showed that when the northern Kuroshio marine heating anomaly was positive,the Z500 in the central and western sections of the North Pacific was anomalously low.By composing the meteorological field anomalies in the positive(or negative) years,it has been revealed that while the Aleutian Low deepens(or shallows),the northwesterly wind overlying the Kuroshio strengthens(or weakens) and induces the near-surface air to be cool(or warm).Furthermore,this increases(or decreases) the upward heat flux anomaly and cools(or warms) the sea surface temperature(SST) accordingly.In the vicinity of Kuroshio and its downstream region,the vertical structure of the air temperature along the latitude is baroclinic;however,the geopotential height is equivalently barotropic,which presents a cool trough(or warm ridge) spatial structure.The divergent wind and vertical velocities are introduced to show the anomalous zonal circulation cell.These are characterized by the rising(or descending) air in the central North Pacific,which flows westward and eastward toward the upper troposphere,descends(or rises) in the Kuroshio and in the western section of North America,and then strengthens(or weakens) the mid-latitude zonal cell(MZC).展开更多
Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. ...Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transformation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The obtained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta- Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.展开更多
With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles ...With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles embedded in N‐doped carbon nanotubes(CNTs)(Ni@NCNTs)homogeneously coated on the surface of carbon fiber with a multistructural component of molybdenum carbide(MoC/Ni@NCNTs/CC)was synthesized.There are two forms of MoC in MoC/Ni@NCNTs/CC,including the MoC nanoclusters in a size of 2 to 4 nm anchored on Ni@N‐doped CNTs and the MoC nanoparticles as an interface between MoC/Ni@NCNTs and carbon cloth(CC).Multifunctional MoC/Ni@NCNTs/CC served as both positive and negative electrode and a heater in flexible supercapacitors and in wearable devices,which exhibited excellent electrochemical and heating performance.Besides,an all‐solid‐state supercapacitor consists of two pieces of MoC/Ni@NCNTs/CC that exhibited extraordinary energy storage performance with high‐energy density(78.7μWh/cm2 at the power density of 2.4 mW/cm2)and excellent cycling stability(≈91%capacity retention after 8000 cycles).Furthermore,all‐solid‐state flexible supercapacitors were incorporated with an MoC/Ni@NCNTs/CC electrode into self‐heating flexible devices for keeping the human body warm.Thus,MoC/Ni@NCNTs/CC is a promising electrode material for flexible and wearable storage systems and heating electronic application.展开更多
A case is reported, during which the Subtropical High over the Western Pacific (hereafter, SHWP in abbreviation) shifted northwestward and met-yu at Chaniiang River valley ended. Several numerical experiments onSHWP a...A case is reported, during which the Subtropical High over the Western Pacific (hereafter, SHWP in abbreviation) shifted northwestward and met-yu at Chaniiang River valley ended. Several numerical experiments onSHWP activity influenced by the heating over south Asia monsoon area are carried out, and the statistic significance of the results is checked. The results indicate that the enhancement of positive heating over South Asia willmotivate a wave-like series of anomaly centers, which propagate northeastward from the maximum heating center.so that a strong positive potential height anomaly center will set up from North China to Japan at Day X resultingin the enhancement of SHWP. Comparison of the influence upon SHWP by the heating over south Asia monsoonarea with that over ITCZ area south to SHWP is also carried out. It is pointed out that the heating over South Asiamonsoon area tends to favor SHWP north\vard movement while the heating over ITCZ area tends to thvor SHWPwestward stretching. As for the time to begin to influence on SHWP, the heating over south Asia monsoon areafavors the enhancement of SHWP atter Day 3 while that over ITCZ south to SHWP effects atter Day 5.展开更多
This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive ...This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.展开更多
Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless indu...Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless induction heating.By adjusting the reaction conditions,the catalyst is able to perform CO_(2)methanation reaction under autothermal process operated inside a non-adiabatic reactor,without any external energy supply.Such autothermal process is possible thanks to the high apparent density of the UO_x which allows one to confine the reaction heat in a small catalyst volume in order to confine the exothermicity of the reaction inside the catalyst and to operate the reaction at equilibrium heat in-heat out.Such autothermal operation mode allows one to significantly reduce the complexity of the process compared to that operated using adiabatic reactor,where complete insulation is required to prevent heat disequilibrium,in order to reduce as much as possible,the heat exchange with the external medium.The catalyst displays an extremely high stability as a function of time on stream as no apparent deactivation.It is expected that such new catalyst with unprecedented catalytic performance could open new era in the field of heterogeneous catalysis where traditional supports show their limitations to operate catalytic processes under severe reaction conditions.展开更多
文摘The phase transformation of hydroxyapatite (HAP, Ca10(PO4)6(OH)2) to the beta tricalcium phosphate phase (β-TCP, β-Ca3(PO4)2) at 1100°C is well known. However, in the case of human tooth, the HAP phase transformation is still an open area. For example, the CaO phase has sometimes been reported in the set of phases that make up the teeth. In this study, physical changes of human teeth when subjected to heat treatment in inert atmosphere (argon) were studied. The results were compared with those obtained in air atmosphere, from room temperature (25°C) up to 1200°C. Morphological changes were analyzed by light and scanning electron microscopy (SEM). The HAP to β-TCP phase transformation was followed in powder samples by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Heating of teeth results in the removal of organic material and structural water before the HAP to β-TCP phase transformation, the increment in hardness and the induced crystal growth. The percentage of the phases, crystal growth and lattice parameter variations as a function of temperature was quantified by Rietveld analysis. The black color was observed in dentin heated under argon atmosphere. Differences in expansivity produce fractures in dentin at 300°C in argon and at 400°C in air. In dentin, the coexistence of the HAP and β-TCP phases was observed after 800°C in argon and after 600°C in air;in enamel it was observed at 600°C in argon compared with 400°C in air. In general, the role played by the argon atmosphere during the thermal treatment of the teeth is to retard the processes observed in air.
基金This work was supported by the project of the Research on Energy Consumption of Office Space in Colleges and Universities under the“Dual Carbon Target”(No.CJ202301006).
文摘The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions.
基金supported by National Natural Science Foundation of China(NSFC)for Excellent Young Scientists(82322039)the National Key Research and Development Program of China(Grant number:2022YFC2408000)+3 种基金NSFC projects(82072063)Key Research and Development Program of Shaanxi Province(2023-YBSF-132)the Medical-Engineering Cross Project of the First Affiliated Hospital of Xi’an Jiaotong University(QYJC02)Science Foundation of Nanjing Chia Tai Tianqing Project(TQ202215).
文摘Magnetic hyperthermia(MH)utilizes magnetic iron oxide nanomaterials(MIONs)to generate nano-scale heat and boost reactive oxygen species production within cells exposed to an external alternating magnetic field.Unlike conventional thermal ablation therapies that produce heat on a macro-scale,MIONs act as point source of heat inside cells,which enables MIONs-mediated MH to modulate cellular functions and fate with precision in real-time.With key benefits such as deep tissue penetration and the ability to regulate processes in a temporal-spatial and quantifiable manner,MH is now emerging as a new cancer therapy.Most intriguing is the apparent ability for MH to alter specific biological pathways associated with an anti-tumor immune response.Research efforts are now accelerating to render MH applicable to the clinical setting,with the objective of supporting the treatment of common cancers such as hepatocellular carcinoma(HCC).In this perspective paper,we highlight the recent progress made in MH,with a particular focus on its ability to manipulate anti-tumor immune mechanisms and the therapeutic advantages demonstrated thus far for HCC.We explore the current challenges in this field,and provide our perspective on the outlook for MH and its role in cancer treatment.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金financially supported by the Science and Technology Innovation Program of Hunan Province(2024RC3003)the Central South University Innovation-Driven Research Programme(2023CXQD012)the Initiative for Sustainable Energy for its financial support。
文摘By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,the interior heating power would increase the working temperature and fire risk,which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties.In this work,we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk,REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload,indicating a 12.0℃lower temperature than the RC film under the same conditions in the outdoor experiment.In the nighttime with a low workload,RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime.In addition,our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise,thus mitigating fire risks.Thus,our design shows a promising solution for the thermal management of outdoor devices,delivering outstanding performance in both heat dissipation and flame retardancy.
文摘Anti-dumping investigations and measures Last year 40 initiations of new anti-dumping investigations relating to the textile and apparel sector were made on China’s exports.The number of initiations remained unchanged compared with the numbers reported for 2009.The Members reporting the highest number of new initiations during Jan.- Dec. 2010 were the United States,reporting 11 new initiations,followed by India, reporting 7 new initiations,the European Union and Turkey(5 each).Concerning reporting the highest number of new initiations on China’s exports in recent years,India came at the top of the list.The data reported above are taken from the report of the PRC Ministry of Commerce.
文摘A survey conducted by China’s General Administration of Quality Supervision,Inspection,and Quarantine finds that technical trade bar-riers from overseas cost Chinese exporters 57.
文摘A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.
基金financially supported by the National Natural Science Foundation of China (No. 51274038)
文摘The evolutionary process and intermetallic compounds of Cu/A1 couples during isothermal heating at a constant bonding tem- perature of 550℃ were investigated in this paper. The interracial morphologies and microstructures were examined by optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, and X-ray diffraction. The results suggest that bonding is not achieved between Cu and A1 at 550℃ in 10 min due to undamaged oxide films. Upon increasing the bonding time from 15 to 25 min, however, metallurgical bonding is obtained in these samples, and the thickness of the reactive zone varies with holding time. In the interfacial region, the final microstructure consists of Cu9A14, CuAl, CuA12, and ct-A1 + CuAl2. Furthermore, these results provide new insights into the mechanism of the imerfacial reaction between Cu and A1. Microhardness measurements show that the chemical composition exerts a signifi- cant influence on the mechanical properties of Cu/A1 couples.
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject(51375503)supported by the National Natural Science Foundation of China+1 种基金Project(2016YFB0300901)supported by the Major State Research Program of ChinaProject(2013A017)supported by the Bagui Scholars Program of Guangxi Zhuang Autonomous Region,China
文摘Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.
基金EISCAT is an international scientific association supported by research organizations in China(China Research Institute of Radiowave Propagation(CRIRP)),Finland(Suomen Akatemia(SA)),Japan(National Institute of Polar Research(NIPR)and Solar-Terrestrial Environment Laboratory(STEL)),Norway(The Research Council of Norway(NFR)),Sweden(Swedish Research Council(VR)),and the United Kingdom(Natural Environment Research Council(NERC)).This work was supported by the National Natural Science Foundation of China(NSFC,grants 41204111,41574146,41774162,and 41704155)the China Postdoctoral Science Foundation(grant 2017M622504).The experiment described in this work was carried out by the Russian team led by N.F.Blagoveshchenskaya.The data used in this research are available through the EISCAT Madrigal database(http://www.eiscat.se/madrigal/)and EISCAT Dynasonde database(https://dynserv.eiscat.uit.no/).
文摘In this study,we present three experiments carried out at the EISCAT(European Incoherent Scatter Scientific Association)heating facility on October 29 and 30,2015.The results from the first experiment showed overshoot during the O-mode heating period.The second experiment,which used cold-start X-mode heating,showed the generation of parametric decay instability,whereas overshoot was not observed.The third experiment used power-stepped X-mode heating with noticeable O-mode wave leakage.Parametric decay instability and oscillating two-stream instability were generated at the O-mode reflection height without the overshoot effect,which implies suppression of the thermal parametric instability with X-mode heating.We propose that the electron temperature increased because X-mode heating below the upper hybrid height decreased the growth rate of the thermal parametric instability.
基金Project(2010DFA72740-06) supported by International Science & Technology Cooperation Program of China
文摘A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.
文摘One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines. CSIRO researchers have developed a number of polymer gels suitable for controlling beatings in coal mines. These gels were developed to meet strict selection criteria including easy preparation, no or low toxicity, controllable gelation time, adaptable to mine water chemistry, adjustable viscosity, relatively long gel life, thermally and chemically stable and low cost. The HPAM-Aluminum Citrate gel system was identified to be the most favourable gel system for fire suppression in under- ground coal mines. These gels can be applied to the areas undergoing coal heating or gas leakage at a controllable gelation time and impermeable gel barriers can be formed in the areas to block ingress of air.
文摘The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.
基金National Key Basic Research and Development Program of China (2007CB411800)
文摘Using monthly reanalysis data of the National Center for Environmental Research/National Center for Atmospheric Research(NCEP/NCAR) and Objectively Analyzed Air-Sea Heat Flux(OAFlux) gathered during the winter,singular vector decomposition(SVD) analysis was conducted to reveal the coupled mode between the Kuroshio marine heating anomaly and the geopotential height at 500 hPa(Z500) over the North Pacific.The first SVD mode showed that when the northern Kuroshio marine heating anomaly was positive,the Z500 in the central and western sections of the North Pacific was anomalously low.By composing the meteorological field anomalies in the positive(or negative) years,it has been revealed that while the Aleutian Low deepens(or shallows),the northwesterly wind overlying the Kuroshio strengthens(or weakens) and induces the near-surface air to be cool(or warm).Furthermore,this increases(or decreases) the upward heat flux anomaly and cools(or warms) the sea surface temperature(SST) accordingly.In the vicinity of Kuroshio and its downstream region,the vertical structure of the air temperature along the latitude is baroclinic;however,the geopotential height is equivalently barotropic,which presents a cool trough(or warm ridge) spatial structure.The divergent wind and vertical velocities are introduced to show the anomalous zonal circulation cell.These are characterized by the rising(or descending) air in the central North Pacific,which flows westward and eastward toward the upper troposphere,descends(or rises) in the Kuroshio and in the western section of North America,and then strengthens(or weakens) the mid-latitude zonal cell(MZC).
文摘Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transformation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The obtained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta- Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.
基金This study was supported by the Taishan Scholars Project Special Funds(Grant No.tsqn201812083)Natural Science Foundation of Shandong Province(Grant Nos.ZR2019YQ20 and 2019JMRH0410)+2 种基金Tip‐top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(Grant No.2016TQ03N541)Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No.2017B030306001)the National Natural Science Foundation of China(Grant Nos.51972147 and 51732007).
文摘With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles embedded in N‐doped carbon nanotubes(CNTs)(Ni@NCNTs)homogeneously coated on the surface of carbon fiber with a multistructural component of molybdenum carbide(MoC/Ni@NCNTs/CC)was synthesized.There are two forms of MoC in MoC/Ni@NCNTs/CC,including the MoC nanoclusters in a size of 2 to 4 nm anchored on Ni@N‐doped CNTs and the MoC nanoparticles as an interface between MoC/Ni@NCNTs and carbon cloth(CC).Multifunctional MoC/Ni@NCNTs/CC served as both positive and negative electrode and a heater in flexible supercapacitors and in wearable devices,which exhibited excellent electrochemical and heating performance.Besides,an all‐solid‐state supercapacitor consists of two pieces of MoC/Ni@NCNTs/CC that exhibited extraordinary energy storage performance with high‐energy density(78.7μWh/cm2 at the power density of 2.4 mW/cm2)and excellent cycling stability(≈91%capacity retention after 8000 cycles).Furthermore,all‐solid‐state flexible supercapacitors were incorporated with an MoC/Ni@NCNTs/CC electrode into self‐heating flexible devices for keeping the human body warm.Thus,MoC/Ni@NCNTs/CC is a promising electrode material for flexible and wearable storage systems and heating electronic application.
文摘A case is reported, during which the Subtropical High over the Western Pacific (hereafter, SHWP in abbreviation) shifted northwestward and met-yu at Chaniiang River valley ended. Several numerical experiments onSHWP activity influenced by the heating over south Asia monsoon area are carried out, and the statistic significance of the results is checked. The results indicate that the enhancement of positive heating over South Asia willmotivate a wave-like series of anomaly centers, which propagate northeastward from the maximum heating center.so that a strong positive potential height anomaly center will set up from North China to Japan at Day X resultingin the enhancement of SHWP. Comparison of the influence upon SHWP by the heating over south Asia monsoonarea with that over ITCZ area south to SHWP is also carried out. It is pointed out that the heating over South Asiamonsoon area tends to favor SHWP north\vard movement while the heating over ITCZ area tends to thvor SHWPwestward stretching. As for the time to begin to influence on SHWP, the heating over south Asia monsoon areafavors the enhancement of SHWP atter Day 3 while that over ITCZ south to SHWP effects atter Day 5.
文摘This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.
基金ORANO Chimie-Enrichissement Co.for the financial support of this project。
文摘Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless induction heating.By adjusting the reaction conditions,the catalyst is able to perform CO_(2)methanation reaction under autothermal process operated inside a non-adiabatic reactor,without any external energy supply.Such autothermal process is possible thanks to the high apparent density of the UO_x which allows one to confine the reaction heat in a small catalyst volume in order to confine the exothermicity of the reaction inside the catalyst and to operate the reaction at equilibrium heat in-heat out.Such autothermal operation mode allows one to significantly reduce the complexity of the process compared to that operated using adiabatic reactor,where complete insulation is required to prevent heat disequilibrium,in order to reduce as much as possible,the heat exchange with the external medium.The catalyst displays an extremely high stability as a function of time on stream as no apparent deactivation.It is expected that such new catalyst with unprecedented catalytic performance could open new era in the field of heterogeneous catalysis where traditional supports show their limitations to operate catalytic processes under severe reaction conditions.