期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
Selection of refrigerant based on multi-objective decision analysis for different waste heat recovery schemes
1
作者 Chengyun Li Jiawen Yang +4 位作者 Li Xia Xiaoyan Sun Lili Wang Chao Chen Shuguang Xiang 《Chinese Journal of Chemical Engineering》 2025年第1期236-247,共12页
Waste heat generation,upgrading,and refrigeration are the fundamental ways to recover and utilize waste heat.Rationalizing the use of refrigerants also contributes to creating energy savings and minimizing carbon emis... Waste heat generation,upgrading,and refrigeration are the fundamental ways to recover and utilize waste heat.Rationalizing the use of refrigerants also contributes to creating energy savings and minimizing carbon emissions.This study evaluates the thermodynamics,economics,and environment of different refrigerants in three waste heat recovery schemes:generate electricity,heat pump,and refrigeration.Based on this,the entropy weight and technique for order preference by similarity to an ideal solution are combined to assess the overall performance of the refrigerants.A thorough analysis reveals that R1234ze(E)could replace R245fa and R123 in the organic Rankine cycle.The best refrigerant for vapor compression refrigeration and high-temperature heat pump systems is R1243zf.In addition,the multi-objective decision analysis shows that the performance difference among the nine selected refrigerants is the total cost,followed by the environmental impact.The approach successfully recognizes the variations between different refrigerants in the same waste heat recovery scheme and gives a thorough evaluation.It sets instructions for the future use of eco-friendly refrigerants and their application of waste heat recovery schemes. 展开更多
关键词 Waste heat recovery REFRIGERANTS TOPSIS Process systems ECONOMICS Environment
在线阅读 下载PDF
Energy,exergy,economic performance evaluation and parametric optimization of organic Rankine cycle for low-temperature flue gas waste heat recovery
2
作者 Jun-sheng Feng Hao Wu +2 位作者 Xin-ni Cheng Liang Zhao Hui Dong 《Journal of Iron and Steel Research International》 2025年第7期1830-1843,共14页
To further enhance the recovery rate of low-temperature waste heat,the low-temperature flue gas in the sinter annular cooler was chosen as the heat source of an organic Rankine cycle(ORC)system,and the comprehensive e... To further enhance the recovery rate of low-temperature waste heat,the low-temperature flue gas in the sinter annular cooler was chosen as the heat source of an organic Rankine cycle(ORC)system,and the comprehensive evaluation of energy,exergy and economic performance of the ORC system was conducted deeply.The energy,exergy and economic performance models of the ORC system were established,and proper candidate organic working fluids(OWFs)were selected based on the thermo-physical properties of OWF and operating characteristics of ORC system.Then,the effects of ORC crucial parameters on the system energy,exergy and economic performances were evaluated in detail.Finally,the bi-objective optimization based on the genetic algorithm was conducted to analyze the optimal performance of the ORC system under the designed ORC crucial parameters,and the exergy efficiency and electricity production cost were set as the evaluation indexes of parametric optimization.The results indicate that the ORC system with the higher evaporation temperature and lower condensation temperature can obtain the larger system exergy efficiency and smaller electricity production cost.The smaller the superheat degree of OWF and pinch-point temperature difference in the evaporator are,the better the energy and exergy performances of the ORC system are.Under the optimization results,R245fa has the best comprehensive performance with the exergy efficiency of 46.34%and electricity production cost of 0.12123$/kWh among the selected candidate OWFs,which should be preferentially chosen as the OWF of the ORC system. 展开更多
关键词 SINTER Waste heat recovery Organic Rankine cycle Exergy efficiency Electricity production cost Parametric optimization
原文传递
Efficiency Analysis and Performance Optimization of Heat Recovery Ventilators(HRVs)for Residential Indoor Air Quality Enhancement in Cold Climates
3
作者 Hamed Yousefzadeh Eini Mohammad Hossein Sabouri Mojtaba Babaelahi 《Fluid Dynamics & Materials Processing》 2025年第7期1771-1788,共18页
Heat Recovery Ventilators(HRVs)are essential for improving indoor air quality(IAQ)and reducing energy consumption in residential buildings situated in cold climates.This study considers the efficiency and performance ... Heat Recovery Ventilators(HRVs)are essential for improving indoor air quality(IAQ)and reducing energy consumption in residential buildings situated in cold climates.This study considers the efficiency and performance optimization of HRVs under cold climatic conditions,where conventional ventilation systems increase heat loss.A comprehensive numerical model was developed using COMSOL Multiphysics,integrating fluid dynamics,heat transfer,and solid mechanics to evaluate the thermal efficiency and structural integrity of an HRV system.The methodology employed a detailed geometry with tetrahedral elements,temperature-dependent material properties,and coupled governing equations solved under Tehran-specific boundary conditions.A multi-objective optimization was implemented in the framework of the Nelder-Mead simplex algorithm,targeting the maximization of the average outlet temperature and minimization of the maximum von Mises thermal stress,with inlet flow velocity as the design variable(range:0.5–1.2m/s).Results indicate an optimal velocity of 0.51563 m/s,achieving an average outlet temperature of 289.44 K and maximum von Mises stress of 221 MPa,validated through mesh independence and detailed contour analyses of temperature,velocity,and stress distributions. 展开更多
关键词 heat recovery ventilators indoor air quality cold climate energy efficiency multi-objective optimization
在线阅读 下载PDF
Selection of Heat Recovery Ventilators in Different Climate Zones of China 被引量:2
4
作者 钟珂 赵敬德 刘加平 《Journal of Donghua University(English Edition)》 EI CAS 2007年第1期79-84,共6页
Considering four different climate zones in China, an investigation on the choice of heat recovery ventilator for the buildings with little moisture emissions is carried out. The annual composition of energy consumpti... Considering four different climate zones in China, an investigation on the choice of heat recovery ventilator for the buildings with little moisture emissions is carried out. The annual composition of energy consumption of air intake for per unitary air ventilation flow rate is evaluated by employing the testing data of climatic parameters in eight selected cities. The analysis shows that the total heat recovery is suitable in a controlled ventilation system with air humidity controlled during heating period of all the climates. For the building without air humidity controlled in winter, the sensible heat recovery ventilators can be used in severe cold and cold regions, and total heat recovery systems are more suitable for energy saving in hot summer and cold winter and hot summer and warm winter regions. 展开更多
关键词 heat recovery ventilator sensible heat latentheat climate zone heat recovery effectiveness.
在线阅读 下载PDF
Exploring heating performance of gas engine heat pump with heat recovery 被引量:3
5
作者 董付江 刘凤国 +2 位作者 李先庭 尤学一 赵冬芳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1931-1936,共6页
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1... In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature. 展开更多
关键词 gas engine heat pump coefficient of performance primary energy ratio heating mode heat recovery
在线阅读 下载PDF
Optimizing Low-Temperature Heat Recovery in a Refinery Fluid Catalytic Cracking Unit Based on Pinch Analysis 被引量:5
6
作者 Zhao Dongfeng Xue Jianliang +1 位作者 Li Shi Shen Chanchan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第2期82-88,共7页
In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes o... In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes occurred during the heat recovery process. In such case, the feed stream was divided into two streams: the liquid feed stream and the gaseous feed stream. Through calculation, the optimal ATmin was established at 26℃, and the total cost of heat exchange process was only $1.098× 106. By using the Problem Table Algorithm for pinch analysis, the temperature of the hot and the cold steams was 119℃ and 93 ℃, respectively. At a temperature higher than 119 ℃, all heat of the hot stream could not be cooled by the condenser, and the minimum heat load of utility (QH.min) was 440457.64 kW; and at a temperature below 93 ℃, all heat of the cold stream could not be provided by the heater, and the minimum cold load of utility (QC.min) was 1965993.85 kW. Finally, the synthesis of heat exchanger network was established through integrating two heat exchanger networks. 展开更多
关键词 low temperature heat recovery pinch technology phase change optimal ATtain
在线阅读 下载PDF
Techno-economic feasibility assessment of a diesel exhaust heat recovery system to preheat mine intake air in remote cold climate regions 被引量:2
7
作者 Marco Antonio Rodrigues de Brito Durjoy Baidya Seyed Ali Ghoreishi-Madiseh 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期517-523,共7页
Underground mines in Arctic and Subarctic regions require the preheating of mine intake air during winter.The cold fresh air of those remote areas can be as severe as40℃ and commonly needs to be heated to around+3℃... Underground mines in Arctic and Subarctic regions require the preheating of mine intake air during winter.The cold fresh air of those remote areas can be as severe as40℃ and commonly needs to be heated to around+3℃.This extensive amount of heating is usually provided by employing large-size air heaters,fueled by diesel,propane,natural gas,or heavy oil,leading to high energy costs and large carbon footprints.At the same time,the thermal energy content of a diesel generator sets(gen-sets)exhaust is known to be one-third of the total heating value of its combusted fuel.Exhaust heat recovery from diesel gen-sets is a growing technology that seeks to mitigate the energy costs by capturing and redirecting this commonly rejected exhaust heat to other applications such as space heating or pre-heating of the mine intake air.The present study investigated the possibility of employing a simple system based on off-theshelf heat exchanger technology,which can recover the waste heat from the exhaust of the power generation units(diesel gen-sets)in an off-grid,cold,remote mine in Canada for heating of the mine intake air.Data from a real mine was used for the analysis along with environmental data of three different location-scenarios with distinct climates.After developing a thermodynamic model,the heat savings were calculated,and an economic feasibility evaluation was performed.The proposed system was found highly viable with annual savings of up to C$6.7 million and capable enough to provide an average of around 75%of the heating demand for mine intake air,leading to a payback period of about eleven months or less for all scenarios.Deployment of seasonal thermal energy storage has also been recommended to mitigate the mismatch between supply and demand,mainly in summertime,possibly allowing the system to eliminate fuel costs for intake air heating. 展开更多
关键词 Exhaust heat recovery Mine energy management Mine heating Alternative energy Intake air heating
在线阅读 下载PDF
Simulation of CO_2 Brayton Cycle for Engine Exhaust Heat Recovery under Various Operating Loads 被引量:2
8
作者 舒歌群 张承宇 +3 位作者 田华 高媛媛 李团兵 仇荣赓 《Transactions of Tianjin University》 EI CAS 2015年第3期193-198,共6页
A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results... A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9% and the system has a better performance at the engine's high operating load, The thermal efficiency can be as large as 24.83% under 100% olaerating load, accordingly, the net outnut nower of 14.86 kW in nhtnined 展开更多
关键词 CO2 Brayton cycle waste heat recovery
在线阅读 下载PDF
A review on current development of thermophotovoltaic technology in heat recovery 被引量:1
9
作者 Shuni Chen Yanming Guo +1 位作者 Qinghui Pan Yong Shuai 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期297-323,共27页
The burning of fossil fuels in industry results in significant carbon emissions,and the heat generated is often not fully utilized.For high-temperature industries,thermophotovoltaics(TPVs)is an effective method for wa... The burning of fossil fuels in industry results in significant carbon emissions,and the heat generated is often not fully utilized.For high-temperature industries,thermophotovoltaics(TPVs)is an effective method for waste heat recovery.This review covers two aspects of high-efficiency TPV systems and industrial waste heat applications.At the system level,representative results of TPV complete the systems,while selective emitters and photovoltaic cells in the last decade are compiled.The key points of components to improve the energy conversion efficiency are further analyzed,and the related micro/nano-fabrication methods are introduced.At the application level,the feasibility of TPV applications in high-temperature industries is shown from the world waste heat utilization situation.The potential of TPV in waste heat recovery and carbon neutrality is illustrated with the steel industry as an example. 展开更多
关键词 THERMOPHOTOVOLTAIC waste heat recovery micro/nano-fabrication carbon neutrality
在线阅读 下载PDF
Waste heat recovery from hot steel slag on the production line:Numerical simulation,validation and industrial test 被引量:1
10
作者 Tianhua Zhang Longheng Xiao +4 位作者 Guibo Qiu Huigang Wang Min Guo Xiangtao Huo Mei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2191-2199,共9页
Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method.First,the effective thermal conductivity of the granular bed was c... Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method.First,the effective thermal conductivity of the granular bed was calculated.Then,the unsteady-state model was used to simulate the heat recovery under three different flow fields(O-type,S-type,and nonshielding type(Nontype)).Second,the simulation results were validated by in-situ industrial experiments.The two methods confirmed that the heat recovery efficiencies of the flow fields from high to low followed the order of Nontype,S-type,and O-type.Finally,heat recovery was carried out under the Nontype flow field in an industrial test.The heat recovery efficiency increased from~76%and~78%to~81%when the steel slag thickness decreased from 400 and 300 to 200 mm,corresponding to reductions in the steel slag mass from 3.96 and 2.97 to 1.98 t with a blower air volume of 14687 m^(3)/h.Therefore,the research results showed that numerical simulation can not only guide experiments on waste heat recovery but also optimize the flow field.Most importantly,the method proposed in this paper has achieved higher waste heat recovery from hot steel slag in industrial scale. 展开更多
关键词 hot steel slag calculation and verification industrial tests waste heat recovery
在线阅读 下载PDF
Simulation of Gas-Fired Triple-Effect LiBr/Water Absorption Cooling System with Exhaust Heat Recovery Generator 被引量:1
11
作者 汪磊磊 由世俊 +1 位作者 张欢 李宪莉 《Transactions of Tianjin University》 EI CAS 2010年第3期187-193,共7页
An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the no... An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the novel cycle based on promising parallel flow with cooling capacity of 1 150 kW is carried out under various heat recovery generator vapor production ratios ranging from 0 to 3.5%. The life cycle saving economic analysis, for which the annual gas conservation is estimated with Bin method, is employed to prove the worthiness of extra expenditure. Results show that the optimum gas saving revenue is obtained at 2.8% heat recovery generator vapor production ratio with 42 kW exhaust heat recovered, and the system energy efficiency is improved from 1.78 to 1.83. The initial investment of exchanger can be paid back within 7 years and 9 000 CNY of gas saving revenue will be achieved over the 15-year life cycle of the machine. This technology can be easily implemented and present desirable economic effects, which is feasible to the development of triple-effect absorption cycles. 展开更多
关键词 LiBr/water triple-effect absorption cooling cycle exhaust heat recovery
在线阅读 下载PDF
Dynamic test on waste heat recovery system with organic Rankine cycle 被引量:3
12
作者 王志奇 刘力文 +1 位作者 夏小霞 周乃君 《Journal of Central South University》 SCIE EI CAS 2014年第12期4607-4612,共6页
Dynamic performance is important to the controlling and monitoring of the organic Rankine cycle(ORC) system so to avoid the occurrence of unwanted conditions. A small scale waste heat recovery system with organic Rank... Dynamic performance is important to the controlling and monitoring of the organic Rankine cycle(ORC) system so to avoid the occurrence of unwanted conditions. A small scale waste heat recovery system with organic Rankine cycle was constructed and the dynamic behavior was presented. In the dynamic test, the pump was stopped and then started. In addition, there was a step change of the flue gas volume flow rate and the converter frequency of multistage pump, respectively. The results indicate that the working fluid flow rate has the shortest response time, followed by the expander inlet pressure and the expander inlet temperature.The operation frequency of pump is a key parameter for the ORC system. Due to a step change of pump frequency(39.49-35.24 Hz),the expander efficiency and thermal efficiency drop by 16% and 21% within 2 min, respectively. Besides, the saturated mixture can lead to an increase of the expander rotation speed. 展开更多
关键词 organic Rankine cycle waste heat recovery dynamic performance
在线阅读 下载PDF
Performance and Optimization for a Ground-Coupled Liquid Loop Heat Recovery Ventilation System 被引量:1
13
作者 周亚素 Per FAHLEN Torbjrn LINDHOLM 《Journal of Donghua University(English Edition)》 EI CAS 2007年第6期749-755,共7页
Ground-coupled heat pumps(GCHP)are commonly used in residential heating system.To mitigate the boreholes temperature dropping with operating time,a new exhaust-air recharging system is developed.The new recharging sys... Ground-coupled heat pumps(GCHP)are commonly used in residential heating system.To mitigate the boreholes temperature dropping with operating time,a new exhaust-air recharging system is developed.The new recharging system can be used in three operational modes.In this paper,a ground-coupled heat recovery ventilation(HRV)model is discussed.A thermal model is set up to find the optimal brine flow rate and heat transfer allocation ratio between exhaust and supply coils for maximum heat recovery efficiency.Contrary to the conventional liquid-loop HRV systems,the brine temperature entering the exhaust coil never goes blow zero(0℃),and hence defrosting is needless in the ground-coupled HRV system.This can make the ground-coupled HRV system over 20% more efficient than a conventional HRV system at low outdoor temperatures. 展开更多
关键词 a ground-coupled HRV system thermal model heat recovery efficiency coils allocation ratio brine flow rate
在线阅读 下载PDF
Waste Heat Recovery from a Drier Receiver of an A/C Unit Using Thermoelectric Generators 被引量:1
14
作者 Ali Jaber Abdulhamed Aws Al-Akam +1 位作者 Ahmed A.Abduljabbar Mohammed H.Alkhafaji 《Energy Engineering》 EI 2023年第8期1729-1746,共18页
Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer rec... Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver(FDR)of an air conditioning(A/C)system,which would otherwise go to waste.The study aims to build a set of thermoelectric generators(TEG)to collect the waste heat of the FDR and generate low-power electricity.A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging.The thermoelectric generator(TEGs)was installed on the FDR of the A/C unit.The test showed that climate conditions have a significant impact on the output power generated from the system.The results showed that the peak voltage recorded in the current study is 5.2 V per day(wet,cold,and wind weather)with an output power of 0.2 W.These values are acceptable for powering the load and charging a single battery with 3.5 V as the voltage increases battery 0.1 V/20 min charge.A case study of operating the emergency signs in a building was considered.The current heat recovery system is deemed to be easily installed and can be connected to a network of TEGs to produce more power. 展开更多
关键词 Thermoelectric generator waste heat filter dryer receiver air conditioning heat recovery
在线阅读 下载PDF
Performance Assessment of a Heat Recovery Unit Utilizing Turbine with Variable Inlet Guide Vanes Configuration for Application in Passenger Vehicles 被引量:1
15
作者 Thaddaeus Julius Tanimu Kogi Ibrahim +1 位作者 Emmanuel Okon Asukwo Ezeaku Ikeokwu Innocent 《Journal of Power and Energy Engineering》 2021年第5期120-133,共14页
This study explores the potentials of employing an Organic Rankine Cycle (ORC) system with variable inlet guide vanes (VIV) turbine geometry designed on a GT-Suite platform for effective exhaust heat recovery (EHR) ap... This study explores the potentials of employing an Organic Rankine Cycle (ORC) system with variable inlet guide vanes (VIV) turbine geometry designed on a GT-Suite platform for effective exhaust heat recovery (EHR) application onboard passenger vehicles. The ORC model simulation was based on vehicle speed mode using R245fa as working fluid to assess the thermal performance of the ORC system when utilizing modified turbine geometry. Interestingly, the model achieved a very improved performance in contrast to the model without a modified turbine configuration. The results revealed the average 2.32 kW ORC net output, 4.93% thermal efficiency, 6.1% mechanical efficiency, and 5.0% improved brake specific fuel consumption (BSFC) for the developed model. As determined by the performance indicators, these promising results from the model study show the prospect of EHR technology application in the transportation sector for reduction in exhaust emissions and fuel savings. 展开更多
关键词 Organic Rankine Cycle System Variable Inlet Guide Vanes heat recovery System Mechanical Efficiency Thermal Efficiency Improved BSFC
在线阅读 下载PDF
Dynamic simulation of drum level sloshing of heat recovery steam generator
16
作者 曹小玲 皮正仁 +2 位作者 蒋绍坚 杨卫宏 B.Wlodzimerz 《Journal of Central South University》 SCIE EI CAS 2013年第2期413-423,共11页
Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level ... Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level. 展开更多
关键词 combined cycle heat recovery steam generator false level drum level sloshing model modularization modeling
在线阅读 下载PDF
Effect of flue gas outlet temperature in evaporator on thermal economic performance of organic Rankine cycle system for sinter waste heat recovery
17
作者 Jun-sheng Feng Xin-ni Cheng +2 位作者 Huan-huan Wang Liang Zhao Hui Dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第12期2378-2390,共13页
In order to improve the recovery and utilization rates of sinter waste heat effectively,the organic Rankine cycle(ORC)system with subcritical cycle was designed to recover the low-temperature sinter cooling flue gas w... In order to improve the recovery and utilization rates of sinter waste heat effectively,the organic Rankine cycle(ORC)system with subcritical cycle was designed to recover the low-temperature sinter cooling flue gas waste heat in an annular cooler for power generation.The thermodynamic,economic and multi-objective optimization models of ORC system were established,and R600a was selected as the ORC working medium.Subsequently,the variations in system thermodynamic performance and economic performance with the ORC thermal parameters were discussed in detail,and the optimal ORC thermal parameters were determined.The results show that the system net output power increases with increasing the evaporation temperature and decreasing the condensation temperature and increases first and then,decreases with the increase in superheat degree for a given flue gas outlet temperature in the evaporator,while the heat transfer area per unit net output power appears different variation trends in various ranges of flue gas outlet temperature.Taking the sinter cooling flue gas waste heat of 160℃as the ORC heat source,the optimal thermal parameters of ORC system were the flue gas outlet temperature of 90℃,the evaporation temperature of 95℃,the superheat degree of 10℃,and the condensation temperature of 28℃. 展开更多
关键词 Sinter.Waste heat recovery Organic Rankine cycle Performance analysis:Parameter optimization:Fluegasoutlettemperature
原文传递
The heat recovery simulation in the system of dry granulation of the steel slag
18
作者 WANG Rong,FENG Xiangpeng and CUI Jinyin Shougang Environmental Protection Industry Department,Beijing 100041,China 《Baosteel Technical Research》 CAS 2010年第S1期138-,共1页
In present,the wet-based pattern is mainly adopted to deal with the steel slag by steel plant at home and abroad,the wet-based technology has some defects;Wasting of water,pollution of the environment,and the slag has... In present,the wet-based pattern is mainly adopted to deal with the steel slag by steel plant at home and abroad,the wet-based technology has some defects;Wasting of water,pollution of the environment,and the slag has not been fully recycled.This paper presents a new method,which is aimed to realize dry granulation,waste heat recovery and comprehensive utilizing the steel slag.According to the ideas of wind quenching granulation,the heating slag from the converter furnace,was bring to the granulation heat exchange system,through the process of breaking in a container,the granulation heat exchange system has the functions of feeding continuously and heat exchange.The heat air,through the diversion tubes,could be recycled in removing the dust.The granulation slag could be bring to a confined roller,granulating and cooling secondarily.The roller export was connected to a magnetic separator.The separated iron could be recycled,and the remaining slag could also be reused as building materials,in process of stabilization and secondary magnetic separation.The heated air could be guided into the boiler to generate the steam,which can be used to generate electricity,or use as cleaned energy,realizing the target to recycle the waste heat in steel slag.The highlights of the new method are dry granulation and waste heat recovery.This paper states the process of heat exchange between the air and the steel slag in the system of granulation heat exchange in the new technical process.In theory,it has been proved reasonable with the the system of granulation heat exchange,and also the work conditions has been optimized. 展开更多
关键词 steel slag waste heat recovery the system of granulation heat exchange SIMULATION
在线阅读 下载PDF
Case Analysis of a Pump-Driven Heat Pipe Heat Recovery Ventilator in an Existing Experiment Building
19
作者 Zhun Li Zhengrong Ouyang +3 位作者 Tianbao Sun Qiang Li Xiaobo Zhao Rong Yu 《Energy Engineering》 EI 2022年第4期1393-1402,共10页
The building energy consumption is an important part among the total society energy consumption,in which the energy consumption for air conditioning occupies almost 70%.The energy consumption of the air conditioning s... The building energy consumption is an important part among the total society energy consumption,in which the energy consumption for air conditioning occupies almost 70%.The energy consumption of the air conditioning system for fresh air handling can be saved effectively when the exhaust air energy could be recovered to preheat or precool the fresh air.Considering the install locations requirements on field,the pump-driven heat pipes(PHP)were developed as heat recovery ventilators(HRVs)and used in an existing experiment building in Beijing Urban.The thermal performance of the PHP HRVs was tested in real operation time periods under winter running mode.Both the power and heat consumption of the modular air handling units with and without HRVs were monitored and obtained,as well as the hourly power and heat consumption.The energy savings of HRVs were analyzed.The results indicate that the PHP HRVs can work steadily and meet the energy recovery need well.The temperature effectiveness of the HRVs can be kept from 60%to 70%.The test total energy saving rate was 24.48%,and the average hourly heat consumption reduced by 28.54%.The daily energy consumption can be saved by 118 kWh,and the energy savings can reach to 9440 kWh for a whole winter. 展开更多
关键词 Case analysis heat recovery ventilator pump-driven heat pipe temperature effectiveness energy saving
在线阅读 下载PDF
Off-Design Simulation of a CSP Power Plant Integrated with aWaste Heat Recovery System
20
作者 T.E.Boukelia A.Bourouis +1 位作者 M.E.Abdesselem M.S.Mecibah 《Energy Engineering》 EI 2023年第11期2449-2467,共19页
Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high sola... Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high solar radiation areas.Furthermore,their dispatch capacities and yields can be affected by high electricity consumption,particularly at night.The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant(PTPP)equipped with a waste heat recovery system.The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,with the aim of assessing the improvements achieved in the new design.Based on the results,it can be concluded that the new layout has increased the annual generated power to almost 183 GWh(an increase of about 7.60% is achieved compared to the Andasol 1 layout that generates 169 GWh annually).Additionally,the proposed installation has achieved an efficiency of 20.55%,which represents a 7.87% increase compared to the previous design(19.05%).The Levelized Cost of Electricity(LCOE)of the new layout has been reduced by more than 5.8% compared to the Andasol 1 plant.Specifically,it has decreased from 13.11 to 12.35 c/kWh.This reduction in LCOE highlights the improved cost-effectiveness of the newlayout,making it amore economically viable option for generating electricity compared to the conventional Andasol 1 plant. 展开更多
关键词 Dispatch capacity organic Rankine cycle parabolic trough solar power plant PERFORMANCES waste heat recovery
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部