期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
Effect of elevated pressure on isobaric molar heat capacity
1
作者 Sheguang Ding 《Chinese Journal of Chemical Engineering》 2025年第6期294-308,共15页
Isobaric molar heat capacity affected by pressures for non-ideal gases is calculated theoretically at specified temperatures by means of gaseous equations of state,i.e.Redlish-Kwong(RK)Equation,SoaveRedlich-Kwong(SRK)... Isobaric molar heat capacity affected by pressures for non-ideal gases is calculated theoretically at specified temperatures by means of gaseous equations of state,i.e.Redlish-Kwong(RK)Equation,SoaveRedlich-Kwong(SRK)Equation,Peng-Robinson(PR)Equation,Virial Equation,coupled with Romberg numeric integral via solving the key obstacle(δV/δT)_(p),and integral(δ^(2)V/δT^(2))_(p).As an example,methane's C_(p)is calculated at constant 300 K but 1 MPa&10 MPa.The calculation results show that less than 2%relative errors occur in comparison with literature values at any specified temperatures and pressures if no phase change survives at elevated pressure P_(2)and temperature T,or when specified temperatures are greater than critical temperatures in spite of elevated pressures.However,greater errors would be present if gases were considered to be ideal,or if temperatures are lower than critical temperatures at elevated pressures(>10 MPa),because C_(p)is the function of both temperature and pressure.In particular,elevated pressures have significant effect on C_(p). 展开更多
关键词 Isobaric molar heat capacity Non-ideal gaseous equation of state Romberg numeric integral
在线阅读 下载PDF
Machine learning models for the density and heat capacity of ionic liquid-water binary mixtures
2
作者 Yingxue Fu Xinyan Liu +3 位作者 Jingzi Gao Yang Lei Yuqiu Chen Xiangping Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期244-255,共12页
Ionic liquids(ILs),because of the advantages of low volatility,good thermal stability,high gas solubility and easy recovery,can be regarded as the green substitute for traditional solvent.However,the high viscosity an... Ionic liquids(ILs),because of the advantages of low volatility,good thermal stability,high gas solubility and easy recovery,can be regarded as the green substitute for traditional solvent.However,the high viscosity and synthesis cost limits their application,the hybrid solvent which combining ILs together with others especially water can solve this problem.Compared with the pure IL systems,the study of the ILs-H_(2)O binary system is rare,and the experimental data of corresponding thermodynamic properties(such as density,heat capacity,etc.)are less.Moreover,it is also difficult to obtain all the data through experiments.Therefore,this work establishes a predicted model on ILs-water binary systems based on the group contribution(GC)method.Three different machine learning algorithms(ANN,XGBoost,LightBGM)are applied to fit the density and heat capacity of ILs-water binary systems.And then the three models are compared by two index of MAE and R^(2).The results show that the ANN-GC model has the best prediction effect on the density and heat capacity of ionic liquid-water mixed system.Furthermore,the Shapley additive explanations(SHAP)method is harnessed to scrutinize the significance of each structure and parameter within the ANN-GC model in relation to prediction outcomes.The results reveal that system components(XIL)within the ILs-H_(2)O binary system exert the most substantial influence on density,while for the heat capacity,the substituents on the cation exhibit the greatest impact.This study not only introduces a robust prediction model for the density and heat capacity properties of IL-H_(2)O binary mixtures but also provides insight into the influence of mixture features on its density and heat capacity. 展开更多
关键词 Ionic liquids DENSITY heat capacity Group contribution method Machine learning
在线阅读 下载PDF
Partial Molar Entropy and Partial Molar Heat Capacity of Electrons in Metals and Superconductors
3
作者 Alan L. Rockwood 《Journal of Modern Physics》 2016年第2期199-218,共20页
There are at least two valid approaches to the thermodynamics of electrons in metals. One takes a microscopic view, based on models of electrons in metals and superconductor and uses statistical mechanics to calculate... There are at least two valid approaches to the thermodynamics of electrons in metals. One takes a microscopic view, based on models of electrons in metals and superconductor and uses statistical mechanics to calculate the total thermodynamic functions for the model-based system. Another uses partial molar quantities, which is a rigorous thermodynamic method to analyze systems with components that can cross phase boundaries and is particularly useful when applied to a system composed of interacting components. Partial molar quantities have not been widely used in the field of solid state physics. The present paper will explore the application of partial molar electronic entropy and partial molar electronic heat capacity to electrons in metals and superconductors. This provides information that is complementary information from other approaches to the thermodynamics of electrons in metals and superconductors and can provide additional insight into the properties of those materials. Furthermore, the application of partial molar quantities to electrons in metals and superconductors has direct relevance to long-standing problems in other fields, such as the thermodynamics of ions in solution and the thermodynamics of biological energy transformations. A unifying principle between reversible and irreversible thermodynamics is also discussed, including how this relates to the completeness of thermodynamic theory. 展开更多
关键词 Partial Molar Entropy Partial Molar heat capacity Electronic Entropy Electronic heat capacity Partial Molar Electronic Entropy Partial Molar Electronic heat capacity
在线阅读 下载PDF
Effects of crystallization on low-temperature specific heat capacity of Cu_(60)Zr_(20)Hf_(10)Ti_(10) bulk metallic glass
4
作者 王志新 孙斌 卢金斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1309-1313,共5页
The specific heat capacities of Cu60Zr20Hfl0Til0 bulk metallic glass (BMG) and crystallized alloys were measured from 2 to 101 K. The effect of crystallization on the specific heat capacity of the BMG was studied. T... The specific heat capacities of Cu60Zr20Hfl0Til0 bulk metallic glass (BMG) and crystallized alloys were measured from 2 to 101 K. The effect of crystallization on the specific heat capacity of the BMG was studied. The effects of crystallization and the relationship between local modes and boson peak in the BMG were discussed. The specific heat capacity deviates from the simple Debye behaviors, showing the presence of local harmonic modes (Einstein oscillator) in the BMG and the crystallized alloy. Model calculation includes the contribution of one Debye mode and two Einstein modes for the BMG, one Debye mode and one Einstein mode for the crystallized alloy, showing an adequate description of the experimental data. 展开更多
关键词 Cu60Zr20HfloTi10 BMG specific heat capacity CRYSTALLIZATION
在线阅读 下载PDF
Excess Molar Volume, Viscosity and Heat Capacity for the Mixture of 1,2-Propanediol-Water at Different Temperatures 被引量:5
5
作者 杨长生 马沛生 +1 位作者 唐多强 靳凤民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第2期175-180,共6页
Experimental densities, viscosities and heat capacities at different temperatures were presented over the entire mole fraction range for the binary mixture of 1,2-propanediol and water. Density values were used in the... Experimental densities, viscosities and heat capacities at different temperatures were presented over the entire mole fraction range for the binary mixture of 1,2-propanediol and water. Density values were used in the determination of excess molar volumes, VE. At the same time, the excess viscosity was investigated. The values of VE and E were fitted to the Redlich-Kister equation. Good agreement was observed. The excess volumes are negative over the entire range of composition. They show an U-shaped-concentration dependence and decrease in absolute values with increase of temperature. Values of E are negative over the entire range of the composition, and has a trend very similar to that of VE . The analysis shows that at any temperature the specific heat of mixture is a linear function of the composition as x1 > 20%. All the extended lines intersect at one point. An empirical equation is obtained to calculate the specific heat to mixture at any composition and temperature in the experimental range. 展开更多
关键词 VISCOSITY heat capacity DENSITY excess molar volume molecular interaction
在线阅读 下载PDF
Thermodynamic properties and heat capacity of Ru metal in HCP,FCC,BCC and liquid state 被引量:4
6
作者 彭红建 周姣连 谢佑卿 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第10期1950-1956,共7页
Isometric heat capacity cv and isobar heat capacity cp of Ru metal in HCP,FCC,BCC and liquid state were calculated by using pure element systematic theory.The results are in good agreement with joint army-navy-air for... Isometric heat capacity cv and isobar heat capacity cp of Ru metal in HCP,FCC,BCC and liquid state were calculated by using pure element systematic theory.The results are in good agreement with joint army-navy-air force(JANAF) experimental value and the calculation result by first-principle(FP) method.But the results have great differences in contrast to Scientific Group Thermodata Europe(SGTE) database.The cause is found that it cannot neglect the electron devotion to heat capacity to adjust cp in one-atom(OA) method.The disparity between OA method and SGTE database was discussed.The main cause is that OA method adopts the crosspoint with iso-Ec-line and iso-a-line in hybritriangle to determine the properties,but SGTE database is obtained by extrapolation from activity measurements and critical assessment of data from a large number of binary system.Thermodynamic properties of Ru metal in HCP,FCC,BCC and liquid state,such as entropy S,enthalpy H and Gibbs energy G were calculated.Therefore,the full description of thermodynamic properties from 0 K to random temperature is implemented. 展开更多
关键词 Ru metal heat capacity thermodynamic property OA method
在线阅读 下载PDF
Zero-Thermal Expansion and Heat Capacity of Zirconium Pyrovanadate Doped with Zirconia and Vanadium (V) Oxide 被引量:4
7
作者 Xianran Xing, Zhenqi Zhu, Xinping Qiu, Guirong Liu (Dept. of Physical Chemistry University of Science and Technology Beijing, Beijing 100083, China Dept. of Chemistry, Tsinghua University, Beijing 100084, China) 《Rare Metals》 SCIE EI CAS CSCD 2001年第1期1-4,共4页
The dominant phase ZrV2O7 material, doped with zirconia and vanadium (V) oxide, was synthesized by solid state reaction and sol-gel methods. X-ray power diffraction patterns show that it is cubic structure. Thermal me... The dominant phase ZrV2O7 material, doped with zirconia and vanadium (V) oxide, was synthesized by solid state reaction and sol-gel methods. X-ray power diffraction patterns show that it is cubic structure. Thermal mechanic analysis measurements exhibit a zero-thermal expansion of this material above 150 degreesC. Meanwhile, the heat capacity dependent on temperature, determined by differential scanning calorimetry, keeps in constant almost in the same temperature range. The relationship between unusual thermal expansion and abnormal heat capacity is discussed with Gruneisen parameter. 展开更多
关键词 zero-thermal expansion of ZrV2O7 heat capacity Gruneisen parameter
在线阅读 下载PDF
Enthalpy and Heat Capacity Data for 1,2-Cyclohexanediol 被引量:1
8
作者 周彩荣 章亚东 蒋登高 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期598-600,共3页
The thermodynamic properties of different geometric structures of 1,2-cyclohexanediol which were rarely reported in literature, such as combustion enthalpy, formation enthalpy, melting enthalpy and heat ca-pacities, w... The thermodynamic properties of different geometric structures of 1,2-cyclohexanediol which were rarely reported in literature, such as combustion enthalpy, formation enthalpy, melting enthalpy and heat ca-pacities, were determined by NETZSCH DSC 204 Scanning Calorimeter. The relationship between the melting point and the composition for the mixture system of cis-1,2-cyclohexanediol and trans-1,2-cyclohexanediol was investigated and corresponding phase diagram was obtained. 'The melting enthalpies of both cis-1,2-cyclohexanediol and trans-1,2-cyclohexanediol are 20.265kJ·mol-1 and 16.368kJ·mol-1 respectively. The standard combustion enthalpies of cia- and trans-1,2-cyclohexaneddiol were determined by calorimeter. They are respec-tively -3507.043 kJ·mol-1 and - 3497.8 kJ·mol-1 at 298.15 K.The standard formation enthalpies are respectively 568.997 kJ·mol-1 and 578.240 kJ·mol-1 for cia- and trans -1,2-cyclohexaneddiol. 展开更多
关键词 1 2-CYCLOHEXANEDIOL melting point melting enthalpy heat capacity combustion enthalpy formation enthalpy
在线阅读 下载PDF
Excess Molar Volume, Viscosity and Heat Capacity for the Binary Mixture of p-Xylene and Acetic Acid at Different Temperatures 被引量:1
9
作者 杨长生 马沛生 +2 位作者 唐多强 尹秋响 赵长伟 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第5期604-609,共6页
Experimental densities, viscosities and heat capacities atdifferent temperatures were presented over the entire range of molefraction for the binary mixture of p-xylene and acetic acid. Densityvalues were used in the ... Experimental densities, viscosities and heat capacities atdifferent temperatures were presented over the entire range of molefraction for the binary mixture of p-xylene and acetic acid. Densityvalues were used in the determination of excess molar volumes, V^E.At the same time, the excess viscosity and excess molar heatcapacities were calculated. The values of V^E, η~E and c^E_p werefitted to the Redlich-Kister equation. Good agreements were observed.The excess molar volumes are positive with a large maximum valuelocated in the central concentration range. 展开更多
关键词 VISCOSITY heat capacity DENSITY excess molar volume
在线阅读 下载PDF
Investigation on specific heat capacity and thermal behavior of sodium hydroxyethyl sulfonate 被引量:1
10
作者 Hongying Hao Yadong Zhang Xiaoya Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第3期319-323,共5页
The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the secon... The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the second and third stages may be about the groups of CH_3CH_2OH, CH_3CHO and SO_2 volatilized, respectively. The decomposition residuum of three stages was analyzed by FT-IR, and the results of FT-IR agreed with the decomposition process predicted by theoretical weight loss. The specific heat capacity of sodium hydroxyethyl sulfonate was determined by differential scanning calorimetry(DSC). The melting temperature and melting enthalpy were obtained to be 465.41 K and 25.69 kJ·mol^(-1), respectively. The molar specific heat capacity of sodium hydroxyethyl sulfonate was determinated from 310.15 K to 365.15 K and expressed as a function of temperature. 展开更多
关键词 Sodium hydroxyethyl sulfonate Melting temperature Specific heat capacity Thermal decomposition
在线阅读 下载PDF
Utilization of Machine Learning Methods in Modeling Specific Heat Capacity of Nanofluids 被引量:1
11
作者 Mamdouh El Haj Assad Ibrahim Mahariq +2 位作者 Raymond Ghandour Mohammad Alhuyi Nazari Thabet Abdeljawad 《Computers, Materials & Continua》 SCIE EI 2022年第1期361-374,共14页
Nanofluids are extensively applied in various heat transfer mediums for improving their heat transfer characteristics and hence their performance.Specific heat capacity of nanofluids,as one of the thermophysical prope... Nanofluids are extensively applied in various heat transfer mediums for improving their heat transfer characteristics and hence their performance.Specific heat capacity of nanofluids,as one of the thermophysical properties,performs principal role in heat transfer of thermal mediums utilizing nanofluids.In this regard,different studies have been carried out to investigate the influential factors on nanofluids specific heat.Moreover,several regression models based on correlations or artificial intelligence have been developed for forecasting this property of nanofluids.In the current review paper,influential parameters on the specific heat capacity of nanofluids are introduced.Afterwards,the proposed models for their forecasting and modeling are proposed.According to the reviewed works,concentration and properties of solid structures in addition to temperature affect specific heat capacity to large extent and must be considered as inputs for the models.Moreover,by using other effective factors,the accuracy and comprehensive of the models can be modified.Finally,some suggestions are offered for the upcoming works in the relevant topics. 展开更多
关键词 Specific heat capacity NANOFLUID artificial neural network CONCENTRATION
在线阅读 下载PDF
Structure and heat capacity of the NaCeF_4 compound
12
作者 Virgil Constantin Ana-Maria Popescu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第9期911-915,共5页
This work continued our general research program on obtaining metallic cerium by electrodeposition from NaCeF4 dis-solved in different molten fluorides. The structure of NaCeF4 (cubic or hexagonal depending on the wa... This work continued our general research program on obtaining metallic cerium by electrodeposition from NaCeF4 dis-solved in different molten fluorides. The structure of NaCeF4 (cubic or hexagonal depending on the way of preparation) was estab-lished by DTA analysis, IR spectra and X-ray diffraction. The heat capacity (Cp) of NaCeF4 was measured by differential scanning calorimetry in the temperature range of 300-1093 K using the“step-method”. The Cp was fitted by an equation with a satisfactory re-sult. Heat capacity was compared with that calculated from the Neumann-Kopp rule (NKR) and the deviations observed were consis-tent with the stability of the NaCeF4 compound. 展开更多
关键词 cerium compounds STRUCTURE heat capacity NaCeF4 rare earths
原文传递
Low Temperature Heat Capacity of Zn Substituted Cobalt Ferrite Nanosphere:The Relation between Magnetic Properties and Microstructure
13
作者 YUAN Meng GU Xiaojie +4 位作者 FU Jie WANG Shaoxu SHI Quan TAN Zhicheng XU Fen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期984-995,共12页
Co_((1-x))ZnxFe_(2)O_(4)nanospheres(x=0,0.5,0.8)with a unidirectional cubic spinel structure were prepared by a solvothermal method.By using a range of theoretical and empirical models,the experimental heat capacity v... Co_((1-x))ZnxFe_(2)O_(4)nanospheres(x=0,0.5,0.8)with a unidirectional cubic spinel structure were prepared by a solvothermal method.By using a range of theoretical and empirical models,the experimental heat capacity values were fitted as a function of temperature over a suitable temperature range to explain the possible relationship between the magnetic properties and microstructure of the nanospheres.As a result,at a low temperature(T<10 K),the parameter Bfswdecreases with increasing Zn concentration,implying that the exchange interaction between A and B sites decreases.At a relatively high temperature(T>50 K),the Debye temperature decreases with increasing Zn concentration,which is due to the weakening of the interatomic bonding force after the addition of non-magnetic materials to the Co Fe_(2)O_(4)spinel ferrite. 展开更多
关键词 Co-Zn spinal ferrite nanospheres magnetic properties heat capacity thermodynamic functions PPMS
原文传递
Thermal Behavior, Specific Heat Capacity and Adiabatic Time-to-explosion of GDN
14
作者 YANG Xing-kun XU Kang-zhen +4 位作者 ZHAO Feng-qi YANG Xin WANG Han SONG Ji-rong WANG Yao-yu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第1期76-80,共5页
A new compound, [(NH2)2C=NH2]+N(NO2)2-(GDN), was prepared by mixing ammonium dinitramide (ADN) and guanidine hydrochloride in water. The thermal behavior of GDN was studied under the non-isothermal conditions... A new compound, [(NH2)2C=NH2]+N(NO2)2-(GDN), was prepared by mixing ammonium dinitramide (ADN) and guanidine hydrochloride in water. The thermal behavior of GDN was studied under the non-isothermal conditions with DSC and TG/DTG methods. The apparent activation energy(E) and pre-exponential constant(A) of the exothermic decomposition stage of GDN were 118.75 kJ/mol and 10^10.86 s^-1, respectively. The critical temperature of the thermal explosion(Tb) of GDN was 164.09 ℃. The specific heat capacity of GDN was determined with the Micro-DSC method and the theoretical calculation method, and the standard molar specific heat capacity was 234.76 J·mol^-1·K^-1 at 298.15 K. The adiabatic time-to-explosion of GDN was also calculated to be a certain value between 404.80 and 454.95 s. 展开更多
关键词 Guanidine dinitramide Ammonium dinitramide Thermal behavior Specific heat capacity Adiabatic time-to-explosion
在线阅读 下载PDF
Heat Capacity and Enthalpy of Fusion of Crystalline Pyrimethanil Decylate(C_(22)H_(33)N_3O_2)
15
作者 SUN Xiao-hong LIU Yuan-fa +2 位作者 TAN Zhi-cheng WANG Mei-han JIA Ying-qi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第6期697-701,共5页
Low-temperature heat capacities of pyrimethanil decylate ( C22 H33 N3 O2 ) were precisely measured with an automated adiabatic calorimeter over the temperature range from 78 to 373 K. The sample was observed to melt... Low-temperature heat capacities of pyrimethanil decylate ( C22 H33 N3 O2 ) were precisely measured with an automated adiabatic calorimeter over the temperature range from 78 to 373 K. The sample was observed to melt at (311.04 ± 0.06) K. The molar enthalpy and entropy of fusion as well as the chemical purity of the compound were determined to be(45876± 12) J/mol, (147. 50 ±0. 05) J. mol^-1 · K^-1 and (99. 21 ±0. 03)% (mass fraction), respectively. The extrapolated melting temperature for the absolutely pure compound obtained from fractional melting experiments is (311. 204±0. 035 ) K. 展开更多
关键词 Pyrimethanil decylate heat capacity Adiabatic calorimetry DSC
在线阅读 下载PDF
Constant-Volume Heat Capacity of Mixed Supercritical Fluids and Molecular Interaction in the Systems
16
作者 Lei SHI Xi Feng ZHANG +3 位作者 Xiao Gang ZHANG Bu Xing HAN Guan Ying YANG Hai Ke YAN(Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080) 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第10期873-874,共2页
Constant-volume heat capacities of supercritical (SC) CO2, SC CO2-n-pentane, and SC CO2-n-heptane mixtures were determined at 308.15 K in the pressure range from 6 to 12 MPa. It was found that there is a maximum in ea... Constant-volume heat capacities of supercritical (SC) CO2, SC CO2-n-pentane, and SC CO2-n-heptane mixtures were determined at 308.15 K in the pressure range from 6 to 12 MPa. It was found that there is a maximum in each heat capacity vs pressure curve. Intermolecular interaction in the fluids was studied. 展开更多
关键词 constant-volume heat capacity mixed supercritical fluids molecular interaction
在线阅读 下载PDF
The revision on heat capacity of Einstein’s solid model
17
作者 王爱坤 周国香 +1 位作者 李国昌 薛建华 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期325-327,共3页
This paper is based on Einstein’s supposition about crystal lattice vibration, which states that when Einstein’s temperature ΘE is not less than the crystal temperature T but less than 2T, the expression of crystal... This paper is based on Einstein’s supposition about crystal lattice vibration, which states that when Einstein’s temperature ΘE is not less than the crystal temperature T but less than 2T, the expression of crystal molar heat capacity changes to the Dulong-Petit equation Cv=3R. Thereby this equation can explain why crystal molar heat capacity equals about 3R not only at low temperatures but also at normal temperatures for many kinds of metals. It can be calculated that the nonlinear interaction among atoms contributes to the molar heat capacity using the coefficient of expansion β and the Grüneisen constant γ. The result is that the relative error between the theoretical and the experimental value of the molar heat capacity is reduced greatly for many kinds of metals, especially for metals of IA. The relative error can be cut by about 17%. 展开更多
关键词 Einstein’s solid model molar heat capacity nonlinear interaction coefficient of expansion
在线阅读 下载PDF
Characteristic of specific heat capacity of NiTi alloy phases
18
作者 田青超 吴建生 《中国有色金属学会会刊:英文版》 CSCD 2000年第6期737-740,共4页
The specific heat capacity of NiTi alloy at constant pressure using MDSC (Modulated differential scanning calorimeter) was determined. It was found that the variation tendencies of the specific heat capacity for diffe... The specific heat capacity of NiTi alloy at constant pressure using MDSC (Modulated differential scanning calorimeter) was determined. It was found that the variation tendencies of the specific heat capacity for different phases are different. The fitting equations of the specific heat capacity for martensite and austenite phases were presented. Then, a reason, based on thermodynamic point of view, was proposed to explain the difference of the specific heat capacity between martensitic and austenitic phases. Finally, compared with the specific heat capacity of pure Ni and Ti, it was found that the specific heat capacity of NiTi alloy is inherent to that of pure Ti. When the specific heat capacity of NiTi alloy is calculated by Neuman Kopp, in the temperature region of phase transformation and the temperature higher than 400 K, the results are not desirable.[ 展开更多
关键词 specific heat capacity NITI phase transformation THERMODYNAMIC
在线阅读 下载PDF
Heat Capacity of Sodium Ditungstate Na_2W_2O_7(s)
19
作者 Shi Jun LIU Qi Yuan CHEN Ping Min ZHANG(Department of Chemistry, Central South University of Technology, Changsha 4l0083) 《Chinese Chemical Letters》 SCIE CAS CSCD 1998年第5期495-496,共2页
The heat capacity of Na2W2O7(s) has been measured using the dropcalorimetry method with a high temperature calorimeter HT1000 in the temperaturerange of 273-974K. The resultS can be represented by the equation C,o/J K... The heat capacity of Na2W2O7(s) has been measured using the dropcalorimetry method with a high temperature calorimeter HT1000 in the temperaturerange of 273-974K. The resultS can be represented by the equation C,o/J K-lmol'=229.50+8.5O52×10-2T-3.833×10°T-2 展开更多
关键词 heat capacity sodium ditungstate calorimetry
在线阅读 下载PDF
Specific Heat Capacity of A2FeCoO6-δ (A = Ca or Sr)
20
作者 S’Nya Sanchez Mandy Guinn +2 位作者 Uttam S. Phuyal Gurjot S. Dhaliwal Ram Krishna Hona 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第4期1-10,共10页
A<sub>2</sub>FeCoO<sub>6-δ</sub> (A = Ca or Sr) is synthesized by the solid-state synthesis method and their specific heat capacities are evaluated at 40˚C using a heat flow meter. The effect ... A<sub>2</sub>FeCoO<sub>6-δ</sub> (A = Ca or Sr) is synthesized by the solid-state synthesis method and their specific heat capacities are evaluated at 40˚C using a heat flow meter. The effect of the A-cation size on the specific heat capacity of these compounds is observed. The specific heat capacity of Sr<sub>2</sub>FeCoO<sub>6-δ</sub> is found to be the highest, and that of Ca<sub>2</sub>FeCoO<sub>6-δ</sub> is the lowest while CaSrFeCoO<sub>6-δ</sub> shows the intermediate value. The specific heat capacity decreases with the decrease of the average A-site ionic radius, demonstrating the relationship between heat capacity and A-site ionic radius. The relationship between specific heat capacity and molar mass is also confirmed as the δ value decreases or molar mass increases from Ca<sub>2</sub>FeCoO<sub>6-δ</sub> to CaSrFeCoO<sub>6-δ</sub> to Sr<sub>2</sub>FeCoO<sub>6-δ</sub>. 展开更多
关键词 Perovskite Oxide Specific heat capacity Oxygen Vacancy XRD Vacancy Order
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部