Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour-Ruffini method. After the tortoise coordinate trans...Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour-Ruffini method. After the tortoise coordinate transformation, the Klein-Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton-Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable.展开更多
We use the generalized uncertainty principle to compute the first correction to the Hawking temperature associated to Hawking effect.From this value we obtain a new evaporation time and entropy of any Schwarzschild bl...We use the generalized uncertainty principle to compute the first correction to the Hawking temperature associated to Hawking effect.From this value we obtain a new evaporation time and entropy of any Schwarzschild black hole analyzing their expressions and consequences.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10873003 and 11045005)the Natural Science Foundation of Zhejiang Province,China (Grant No. Y6090739)
文摘Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour-Ruffini method. After the tortoise coordinate transformation, the Klein-Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton-Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable.
基金The author is partially supported by a MINECO/FEDER Grant Number 2017-84383-Pan AGAUR(Generalitat de Catalunya)Grant Number 2017SGR 1276.
文摘We use the generalized uncertainty principle to compute the first correction to the Hawking temperature associated to Hawking effect.From this value we obtain a new evaporation time and entropy of any Schwarzschild black hole analyzing their expressions and consequences.