期刊文献+
共找到1,170篇文章
< 1 2 59 >
每页显示 20 50 100
Hawkes跳扩散模型下具有随机相关的期权定价
1
作者 吕建平 马勇 《高校应用数学学报(A辑)》 北大核心 2025年第3期266-280,共15页
在随机波动率模型基础上,假设资产价格的跳跃由具有自刺激性的Hawkes过程所驱动,无风险利率是随机的,且标的资产价格与其波动率是随机相关的.针对所构建的标的资产价格模型,求得了标准欧式期权价值的解析表达式.数值分析中,发现相比常... 在随机波动率模型基础上,假设资产价格的跳跃由具有自刺激性的Hawkes过程所驱动,无风险利率是随机的,且标的资产价格与其波动率是随机相关的.针对所构建的标的资产价格模型,求得了标准欧式期权价值的解析表达式.数值分析中,发现相比常利率模型和常跳跃强度模型,文中所提模型的期权价值更高,但当到期时间较短时,随机利率和随机跳强度对期权价值影响甚微;此外,文中的模型能生成形态丰富的隐含波动率曲面,因此具备同时拟合期权市场中普遍观察到的隐含波动率微笑和隐含波动率倾斜的能力. 展开更多
关键词 期权定价 hawkes过程 随机波动率 随机利率 随机相关
在线阅读 下载PDF
Hawkes跳扩散模型下的最优投资策略
2
作者 贾沐真 王伟 《宁波大学学报(理工版)》 2025年第6期97-104,共8页
旨在研究投资者在股票和货币市场账户之间的最优资产配置问题,为此假定股票价格服从Hawkes跳扩散模型,且跳跃幅度满足正态分布,以最大化终端财富效用为目标,运用随机动态规划方法构建相应的Hamilton-Jacobi-Bellman(HJB)方程,并利用Feyn... 旨在研究投资者在股票和货币市场账户之间的最优资产配置问题,为此假定股票价格服从Hawkes跳扩散模型,且跳跃幅度满足正态分布,以最大化终端财富效用为目标,运用随机动态规划方法构建相应的Hamilton-Jacobi-Bellman(HJB)方程,并利用Feynman-Kac公式获得值函数的隐式解,再基于Banach不动点定理严格证明了最优投资策略的收敛性,最后采用迭代收敛数值方法求解出最优投资策略的解析解。数值结果证实,Hawkes跳扩散模型的自激发性对最优投资策略存在显著影响。 展开更多
关键词 hawkes跳扩散 动态规划 最优投资 迭代收敛
在线阅读 下载PDF
基于改进Harris Hawk优化算法的虚拟电厂优化调度研究
3
作者 丁君 秦浩庭 +3 位作者 苏鹏 曾雪松 李竞轩 郝巍 《可再生能源》 北大核心 2025年第6期829-838,共10页
文章针对虚拟电厂的优化调度问题,提出了一种基于改进Harris Hawk优化算法的调度策略。该策略旨在提高包含光伏、风力发电、燃料电池以及热电联产单元的虚拟电厂的经济性和环境友好性,并引入电动汽车和储能系统分别作为灵活储备和旋转备... 文章针对虚拟电厂的优化调度问题,提出了一种基于改进Harris Hawk优化算法的调度策略。该策略旨在提高包含光伏、风力发电、燃料电池以及热电联产单元的虚拟电厂的经济性和环境友好性,并引入电动汽车和储能系统分别作为灵活储备和旋转备用,建立虚拟电厂灵活性聚合模型,通过改进的Harris Hawk优化算法调度方案。最后进行全面的日前调度和短期调度分析。结果表明,该策略能有效应对可再生能源的不确定性,实现对联络线功率的响应跟随。研究结果为虚拟电厂的协调优化调度提供了新的思路和方法。 展开更多
关键词 虚拟电厂 改进Harris hawk优化算法 灵活性聚合 日前和短期调度
在线阅读 下载PDF
Fire Hawk Optimization-Enabled Deep Learning Scheme Based Hybrid Cloud Container Architecture for Migrating Interoperability Based Application
4
作者 G Indumathi R Sarala 《China Communications》 2025年第5期285-304,共20页
Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositori... Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositories results in increased overload due to the adoption of cloud services.Moreover,the migration of applications on the cloud with optimized resource allocation is a herculean task even though it is employed for minimizing the dilemma of allocating resources.In this paper,a Fire Hawk Optimization enabled Deep Learning Scheme(FHOEDLS)is proposed for minimizing the overload and optimizing the resource allocation on the hybrid cloud container architecture for migrating interoperability based applications This FHOEDLS achieves the load prediction through the utilization of deep CNN-GRU-AM model for attaining resource allocation and better migration of applications.It specifically adopted the Fire Hawk Optimization Algorithm(FHOA)for optimizing the parameters that influence the factors that aid in better interoperable application migration with improved resource allocation and minimized overhead.It considered the factors of resource capacity,transmission cost,demand,and predicted load into account during the formulation of the objective function utilized for resource allocation and application migration.The cloud simulation of this FHOEDLS is achieved using a container,Virtual Machine(VM),and Physical Machine(PM).The results of this proposed FHOEDLS confirmed a better resource capability of 0.418 and a minimized load of 0.0061. 展开更多
关键词 CONTAINER deep learning fire hawk optimization algorithm hybrid cloud interoperable application migration
在线阅读 下载PDF
An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem
5
作者 Yuting Zhu Wenyu Zhang +3 位作者 Hainan Wang Junjie Hou Haining Wang Meng Wang 《Computers, Materials & Continua》 2025年第2期2177-2198,共22页
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge... Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems. 展开更多
关键词 Site selection triangular fuzzy theory chaotic quantum Harris hawks optimization multi-objective optimization
在线阅读 下载PDF
Multi-Neighborhood Enhanced Harris Hawks Optimization for Efficient Allocation of Hybrid Renewable Energy System with Cost and Emission Reduction
6
作者 Elaine Yi-Ling Wu 《Computer Modeling in Engineering & Sciences》 2025年第4期1185-1214,共30页
Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex syst... Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems. 展开更多
关键词 Hybrid renewable energy system multi-neighborhood enhanced Harris hawks optimization costemission optimization renewable energy allocation problem reliability
在线阅读 下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem 被引量:1
7
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
在线阅读 下载PDF
Consequences of Rényi entropy on the thermal geometries and Hawking evaporation of topological dyonic dilaton black hole
8
作者 Muhammad Yasir Xia Tiecheng +1 位作者 Muhammad Usman Shahid Chaudhary 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第2期102-110,共9页
The thermodynamics of black holes(BHs)has had a profound impact on theoretical physics,providing insight into the nature of gravity,the quantum structure of spacetime and the fundamental laws governing the Universe.In... The thermodynamics of black holes(BHs)has had a profound impact on theoretical physics,providing insight into the nature of gravity,the quantum structure of spacetime and the fundamental laws governing the Universe.In this study,we investigate thermal geometries and Hawking evaporation of the recently proposed topological dyonic dilaton BH in anti-de Sitter(Ad S)space.We consider Rényi entropy and obtain the relations for pressure,heat capacity and Gibbs free energy and observe that the Rényi parameter and dilaton field play a vital role in the phase transition and stability of the BH.Moreover,we use Weinhold,Ruppeiner and Hendi Panahiyah Eslam Momennia models to evaluate the scalar curvature of the BH and find out that the divergence points of the scalar curvature coincides with the zero of specific heat.Finally,using Stefan–Boltzmann law,we determine that the BH without a dilaton field evaporates far more quickly compared to the dilaton BH in Ad S space. 展开更多
关键词 topological dyonic dilaton black hole phase transition thermal geometry hawking evaporation
原文传递
复杂山区环境下的应急无人机路径规划 被引量:2
9
作者 彭艺 唐剑 杨青青 《吉林大学学报(理学版)》 北大核心 2025年第2期585-594,共10页
针对复杂山区环境下应急通信无人机的飞行路径规划问题,通过综合考虑障碍物、无人机载重量、无人机电池容量等约束条件,为降低无人机的飞行时间并延长飞行距离,基于Harris鹰算法框架设计一种改进Harris鹰算法的无人机三维路径规划方法.... 针对复杂山区环境下应急通信无人机的飞行路径规划问题,通过综合考虑障碍物、无人机载重量、无人机电池容量等约束条件,为降低无人机的飞行时间并延长飞行距离,基于Harris鹰算法框架设计一种改进Harris鹰算法的无人机三维路径规划方法.首先,对Harris鹰的种群初始位置、位置更新方程和猎物的逃逸能量进行改进;其次,采用三次样条曲线插值法对路径进行平滑,以确保无人机飞行过程中安全可靠且平滑;最后,将应急无人机在具有不同障碍物的山区进行测试,并将所得结果与标准Harris鹰、蚁群算法和人工蜂群算法进行对比分析.分析结果表明,该算法所规划的三维路径规划方法生成的路径更短,并能更快地寻找到最优路径. 展开更多
关键词 路径规划 Harris鹰算法 无人机 最优路径
在线阅读 下载PDF
The Hawking Hubble Temperature as the Minimum Temperature, the Planck Temperature as the Maximum Temperature, and the CMB Temperature as Their Geometric Mean Temperature
10
作者 Espen Gaarder Haug Eugene Terry Tatum 《Journal of Applied Mathematics and Physics》 2024年第10期3328-3348,共21页
Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble tempe... Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble temperature and the maximum Planck temperature of the expanding universe over the course of cosmic time. This mathematical discovery suggests a re-consideration of Rh=ctcosmological models, including black hole cosmological models, even if it possibly could also be consistent with the Λ-CDM model. Most importantly, this paper contributes to the growing literature in the past year asserting a tightly constrained mathematical relationship between the CMB temperature, the Hubble constant, and other global parameters of the Hubble sphere. Our approach suggests a solid theoretical framework for predicting and understanding the CMB temperature rather than solely observing it.1. 展开更多
关键词 hawking Temperature Planck Temperature CMB Temperature Geometric Mean Compton Wavelength Hubble Sphere Cosmological Models
在线阅读 下载PDF
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
11
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION Robust Kernel Density Estimation M-ESTIMATION Harris hawks Optimisation Algorithm Complete Cross-Validation
在线阅读 下载PDF
An Improved Harris Hawk Optimization Algorithm
12
作者 GuangYa Chong Yongliang YUAN 《Mechanical Engineering Science》 2024年第1期21-25,共5页
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F... Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems. 展开更多
关键词 Harris hawk optimization algorithm chaotic mapping cosine strategy function optimization
在线阅读 下载PDF
基于HHO-MLP神经网络的变工况下齿轮箱故障诊断方法研究
13
作者 蒋章雷 郑威 +3 位作者 门大超 刘秀丽 查振栋 李子涵 《制造技术与机床》 北大核心 2025年第5期29-35,共7页
针对变工况下齿轮箱故障信号复杂多变导致故障诊断困难的问题,提出了一种基于哈里斯鹰优化器(Harris hawk optimizer,HHO)优化多层感知机(multi-layer perception,MLP)神经网络的故障诊断方法。首先,采用均方根-均值(root mean square-m... 针对变工况下齿轮箱故障信号复杂多变导致故障诊断困难的问题,提出了一种基于哈里斯鹰优化器(Harris hawk optimizer,HHO)优化多层感知机(multi-layer perception,MLP)神经网络的故障诊断方法。首先,采用均方根-均值(root mean square-mean,RMS-MEAN)方法对齿轮箱故障振动信号进行预处理,以降低随机变工况对不同振动信号的影响;其次,引入变工况修正因子k,利用HHO对MLP的超参数进行自动优化,增强振动信号中的周期性特征,构造变工况下最优的MLP网络结构;最后,将特征增强数据输入HHO-MLP中进行故障诊断。通过MCC5-THU齿轮箱故障数据集验证,该方法在变工况下对齿轮箱故障的诊断性能显著优于其他模型,故障分类的准确率可达97.5%,这说明了其在变工况下的有效性。 展开更多
关键词 齿轮箱 变工况 哈里斯鹰优化器 多层感知机 故障诊断
在线阅读 下载PDF
基于IHHO-Stacking集成模型的车辆驾驶性评估
14
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 STACKING 集成模型 客观评价
在线阅读 下载PDF
基于RTH-FMD和1.5维谱的滚动轴承早期故障诊断方法研究
15
作者 唐贵基 张龙 +3 位作者 薛贵 徐振丽 曾鹏飞 王晓龙 《动力工程学报》 北大核心 2025年第5期714-723,共10页
针对滚动轴承的早期故障诊断问题,深入研究了一种红尾鹰(RTH)算法参数优化特征模态分解(FMD)和1.5维谱相结合的滚动轴承故障诊断方法。首先,通过理论分析,设计出脉冲能量因子指标(PEFI),并将其作为适应度函数;其次,利用RTH算法并行搜寻... 针对滚动轴承的早期故障诊断问题,深入研究了一种红尾鹰(RTH)算法参数优化特征模态分解(FMD)和1.5维谱相结合的滚动轴承故障诊断方法。首先,通过理论分析,设计出脉冲能量因子指标(PEFI),并将其作为适应度函数;其次,利用RTH算法并行搜寻FMD的关键影响参数组合,自适应地达到信号最佳分解效果;再次,通过PEFI选取分解后的最优信号分量,并进行包络解调运算;最后,计算包络信号的1.5维谱,在谱图中分析、提取轴承故障特征频率信息,实现轴承早期微弱故障的准确性诊断。模拟故障实验和工程案例分析结果表明:所研究方法解决了参数自适应的问题,大幅降低了噪声及其他干扰成分对诊断的影响,拥有良好的鲁棒性,能够有效提取轴承早期故障信号中的微弱特征信息,具有重要的实际工程参考价值。 展开更多
关键词 滚动轴承 微弱故障提取 特征模态分解 红尾鹰算法 1.5维谱
在线阅读 下载PDF
基于改进HHO的水轮机空化信号降噪及特征提取
16
作者 刘忠 刘圳 +2 位作者 邹淑云 周泽华 乔帅程 《噪声与振动控制》 北大核心 2025年第2期70-75,111,共7页
为对水轮机空化声发射信号进行降噪并提取其时频特征,提出一种基于改进哈里斯鹰算法(IHHO)和波动散布熵(FDE)的降噪和特征提取方法。首先,利用秃鹰搜索算法(BES)的螺旋搜索机制改进哈里斯鹰算法(HHO)的全局搜索阶段。然后,以散布熵差异... 为对水轮机空化声发射信号进行降噪并提取其时频特征,提出一种基于改进哈里斯鹰算法(IHHO)和波动散布熵(FDE)的降噪和特征提取方法。首先,利用秃鹰搜索算法(BES)的螺旋搜索机制改进哈里斯鹰算法(HHO)的全局搜索阶段。然后,以散布熵差异互相关系数为适应度函数,利用IHHO对VMD进行参数寻优,对信号进行最优VMD分解和相关系数阈值重构从而实现降噪。最后,提取其能量和波动散布熵特征,分析其随空化系数变化的关系。结果表明:相较于灰狼-布谷鸟(GWO-CS)和HHO算法,IHHO对VMD寻优的降噪效果更好;随着空化系数减小,声发射信号能量呈现先增加、再减小、再增加、再减小的趋势,波动散布熵值呈现先减小后增大的趋势。 展开更多
关键词 声学 水轮机 空化 声发射 降噪 哈里斯鹰优化算法 秃鹰搜索算法
在线阅读 下载PDF
基于适应度地形分析的优化算法调度方法
17
作者 朱晓东 任春晓 +2 位作者 刘晓兰 陈科 余春明 《郑州大学学报(工学版)》 北大核心 2025年第6期32-39,共8页
由于不同的优化问题具有不同的适应度地形,而一种优化算法通常只在某一种适应度地形上有更好的效果,因此,提出了一种基于适应度地形分析的优化算法调度方法(FL-AMAS)。首先,通过提取优化目标函数的局部峰簇数特征来描述优化问题的地形特... 由于不同的优化问题具有不同的适应度地形,而一种优化算法通常只在某一种适应度地形上有更好的效果,因此,提出了一种基于适应度地形分析的优化算法调度方法(FL-AMAS)。首先,通过提取优化目标函数的局部峰簇数特征来描述优化问题的地形特征,根据地形特征选择相应具有优势的算法,利用对算法的调度发挥不同算法的最大优势;其次,根据优化问题对探索性与开发性的平衡要求,选择了具有高开发能力的哈里斯鹰优化算法(HHO)和具有高探索能力的差分进化算法(DE)作为调度使用的算法,根据不同的适应度地形特征来选择更适合的算法。实验结果表明:在基准测试集上,相较于单独使用HHO,FL-AMAS在收敛性能上提升了75%;与DE算法相比,FL-AMAS收敛性能提升了40%。将FL-AMAS与6种先进算法进行比较,在75%的基准测试集上,FL-AMAS的收敛精度均优于这些算法。通过调度其他类型优化算法的结果进行对比,也验证了所提调度方法的有效性和扩展性。 展开更多
关键词 优化算法调度 适应度地形 特征提取 局部峰值点 哈里斯鹰优化算法 差分进化算法
在线阅读 下载PDF
基于改进哈里斯鹰算法的生鲜品冷链物流路径优化研究
18
作者 张天瑞 祝芳芳 牛慧媛 《重庆师范大学学报(自然科学版)》 北大核心 2025年第2期1-13,共13页
严重的交通拥堵问题会导致生鲜产品在冷链物流配送过程中时效性降低。为了提升顾客满意度、保证商品新鲜度和降低配送成本,提出了考虑交通拥堵的生鲜品冷链物流配送模型,并改进了哈里斯鹰优化算法以提高求解精度。首先,基于传统的生鲜... 严重的交通拥堵问题会导致生鲜产品在冷链物流配送过程中时效性降低。为了提升顾客满意度、保证商品新鲜度和降低配送成本,提出了考虑交通拥堵的生鲜品冷链物流配送模型,并改进了哈里斯鹰优化算法以提高求解精度。首先,基于传统的生鲜产品冷链物流模型,在考虑交通拥堵的情况下,综合考虑各项配送成本,构建了新的配送模型。其次,针对哈里斯鹰优化算法收敛速度慢、易陷入局部最优的不足,设计改进的哈里斯鹰算法,加强局部寻优能力,提高求解精度。最后,通过仿真实验,验证了所建模型和改进算法的性能。通过仿真实验和对比分析,证明了所提算法能够得到最小目标函数值和最优配送路线。因此,说明所提出的数学模型及改进算法是有效的。 展开更多
关键词 冷链物流 路径优化 交通拥堵 改进哈里斯鹰算法
原文传递
计及EV和BESS的配电网削峰填谷两阶段优化调度策略研究
19
作者 刘仲民 王瑜 《电源学报》 北大核心 2025年第1期160-172,共13页
随着电动汽车的大规模入网,其无序充电使得负荷峰谷差距进一步激增,给电力系统的稳定运行带来了负面影响,因此提出1种计及电动汽车负荷和电池储能系统的削峰填谷两阶段优化调度策略。首先,以用户充电成本和负荷绝对峰谷差最小为目标建... 随着电动汽车的大规模入网,其无序充电使得负荷峰谷差距进一步激增,给电力系统的稳定运行带来了负面影响,因此提出1种计及电动汽车负荷和电池储能系统的削峰填谷两阶段优化调度策略。首先,以用户充电成本和负荷绝对峰谷差最小为目标建立电动汽车有序充电调度模型,利用改进粒子群优化算法对模型进行求解,促使电动汽车避峰充电;其次,以负荷方差和储能寿命综合成本最小为目标建立储能系统削峰填谷优化调度模型,采用改进哈里斯鹰优化HHO(Harris Hawks optimization)算法对模型进行求解,从而减小负荷峰谷差,并通过削峰填谷评价指标对优化结果进行评估和分析;最后,以某电网实测负荷功率为例进行仿真实验,结果表明,所提两阶段优化调度策略使得负荷峰值降低了约147 k W,负荷谷值上升了约223 k W,峰谷差降低了约46.73%,能够有效改善负荷曲线,缓解负荷高峰期电力供应紧张的压力,保证了电网的安全、稳定运行。 展开更多
关键词 削峰填谷 储能系统 调度策略 两阶段优化 哈里斯鹰优化
在线阅读 下载PDF
样本不平衡条件下煤矿突水水源识别——以谢桥煤矿为例
20
作者 王彦彬 闫晓杉 《安全与环境学报》 北大核心 2025年第7期2553-2561,共9页
为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条... 为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条谢桥煤矿水化学数据进行分析,首先对样本数据进行标准化处理和主成分分析(Principal Component Analysis, PCA),将数据集划分为训练集和测试集,对训练集中少数类样本采用SMOTE法生成新的样本,然后采用改进混沌哈里斯鹰优化(Chaos Harris Hawks Optimization, CHHO)算法结合十折交叉验证优化支持向量机惩罚因子C和径向基函数(Radial Basis Function, RBF)核的参数γ,根据优化结果建立突水水源识别模型,对测试集中突水水源进行识别。将该方法与朴素贝叶斯、随机森林所得结果进行比较,结果显示,采用本方法对测试集识别结果准确性优于其他两种方法,表明该方法在突水水源识别上具有良好的实用性和有效性。 展开更多
关键词 安全工程 突水水源识别 主成分分析 合成少数类过采样技术 混沌哈里斯鹰优化算法 支持向量机
原文传递
上一页 1 2 59 下一页 到第
使用帮助 返回顶部