Given the pending completion and publication of the final Dark Energy Survey (DESI) results, this letter presents the corresponding predictions of the Haug-Tatum cosmology (HTC) model. In particular, we show in tabula...Given the pending completion and publication of the final Dark Energy Survey (DESI) results, this letter presents the corresponding predictions of the Haug-Tatum cosmology (HTC) model. In particular, we show in tabular and graphic form the “dark energy decay” curve which the HTC model predicts for cosmological redshifts covering the range of 0 - 2.0 z. Furthermore, we present the HTC model distance-vs-redshift curve in comparison to the three very different curves (for luminosity distance, angular diameter distance, and co-moving distance) calculated within the Lambda-CDM model. Whether the expansion of our universe is actually undergoing slight acceleration or the finely-tuned cosmic coasting at constant velocity of Rh = ct models, including HTC, will hopefully soon be answered by the many pending observational studies.展开更多
This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is em...This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is emphasized and a rationale for this is given. Remarkably, the proposed solutions of this model have incorporated all 580 supernova redshifts in the Union2 database. Therefore, one can usefully apply this thermodynamic law in the form of a continually expanding black-body universe model. To our knowledge, no other cosmological model has achieved such high-precision observational correlation.展开更多
This paper discusses an absurdity that is rooted in the modern physics’ interpretation of Einstein’s relativistic mass formula when v is very close to c. Modern physics (and Einstein himself) claimed that the speed ...This paper discusses an absurdity that is rooted in the modern physics’ interpretation of Einstein’s relativistic mass formula when v is very close to c. Modern physics (and Einstein himself) claimed that the speed of a mass can never reach the speed of light. Yet at the same time they claim that it can approach the speed of light without any upper limit on how close it could get to that special speed. As we will see, this leads to some absurd predictions. If we assert that a material system cannot reach the speed of light, an important question is then, “How close can it get to the speed of light?” Is there a clear-cut boundary on the exact speed limit for an electron, as an example? Or must we settle for a mere approximation?展开更多
We are proposing a temperature formula for the Cosmic Neutrino back-ground(CνB)temperature that can be derived from the Stefan-Boltzman law under certain assumptions,such as R_(H_(t))=ct cosmology.Our derived for-mul...We are proposing a temperature formula for the Cosmic Neutrino back-ground(CνB)temperature that can be derived from the Stefan-Boltzman law under certain assumptions,such as R_(H_(t))=ct cosmology.Our derived for-mula gives a prediction of the CνB temperature of 1.9336 K±0.0072 K which is in line with the current literature on the topic.展开更多
文摘Given the pending completion and publication of the final Dark Energy Survey (DESI) results, this letter presents the corresponding predictions of the Haug-Tatum cosmology (HTC) model. In particular, we show in tabular and graphic form the “dark energy decay” curve which the HTC model predicts for cosmological redshifts covering the range of 0 - 2.0 z. Furthermore, we present the HTC model distance-vs-redshift curve in comparison to the three very different curves (for luminosity distance, angular diameter distance, and co-moving distance) calculated within the Lambda-CDM model. Whether the expansion of our universe is actually undergoing slight acceleration or the finely-tuned cosmic coasting at constant velocity of Rh = ct models, including HTC, will hopefully soon be answered by the many pending observational studies.
文摘This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is emphasized and a rationale for this is given. Remarkably, the proposed solutions of this model have incorporated all 580 supernova redshifts in the Union2 database. Therefore, one can usefully apply this thermodynamic law in the form of a continually expanding black-body universe model. To our knowledge, no other cosmological model has achieved such high-precision observational correlation.
文摘This paper discusses an absurdity that is rooted in the modern physics’ interpretation of Einstein’s relativistic mass formula when v is very close to c. Modern physics (and Einstein himself) claimed that the speed of a mass can never reach the speed of light. Yet at the same time they claim that it can approach the speed of light without any upper limit on how close it could get to that special speed. As we will see, this leads to some absurd predictions. If we assert that a material system cannot reach the speed of light, an important question is then, “How close can it get to the speed of light?” Is there a clear-cut boundary on the exact speed limit for an electron, as an example? Or must we settle for a mere approximation?
文摘We are proposing a temperature formula for the Cosmic Neutrino back-ground(CνB)temperature that can be derived from the Stefan-Boltzman law under certain assumptions,such as R_(H_(t))=ct cosmology.Our derived for-mula gives a prediction of the CνB temperature of 1.9336 K±0.0072 K which is in line with the current literature on the topic.