期刊文献+
共找到4,057篇文章
< 1 2 203 >
每页显示 20 50 100
Equivalent Design Methodology for Ship-Stiffened Steel Plates under Ogival-Nosed Projectile Penetration
1
作者 Yezhi Qin Qinglin Chen +1 位作者 Ying Wang Yingqiang Cai 《Computer Modeling in Engineering & Sciences》 2025年第8期1883-1906,共24页
The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fews... The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fewstudies have addressed the issue of model equivalence under penetration loading.This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate.Four equivalent stiffened plate methods are proposed based on the area,flexural modulus,moment of inertia,and thickness.The results indicate that thickness equivalence(DM4)is unsuitable for penetration-loaded stiffened plates,except under low-speed,nonpenetrating through impacts,and yields less accuracy than DM1/DM3.DM1,DM2,and DM3 each perform optimally with specific velocity ranges:DM1 at very low(critical)and high velocities,DM3 at low velocities,and DM2 at high speeds.Furthermore,in penetration scenarios,T-shaped stiffeners can be replacedwith rectangular ones,as both exhibit similar failure behaviors and deflection trends,simplifying the design while preserving key structural characteristics.These findings provide valuable insights into the design of protective ship structures. 展开更多
关键词 Ogival-nosed projectile stiffened plate equivalent model design PENETRATION
在线阅读 下载PDF
Research on the Ultimate Strength of a Hull Bottom Full-Scale Stiffened Plate Under Axial Compression and Lateral Pressure
2
作者 LI Zheng-jie DING Qi-yin +1 位作者 CUI Hu-wei ZHAO Nan 《China Ocean Engineering》 2025年第1期1-12,共12页
The influences of different factors,including whether the transverse frames are actually built,longitudinal and transverse welding residual stresses,and unloaded edge boundaries,on the ultimate strength and failure mo... The influences of different factors,including whether the transverse frames are actually built,longitudinal and transverse welding residual stresses,and unloaded edge boundaries,on the ultimate strength and failure mode of a real hull bottom full-scale stiffened plate under axial compression and lateral pressure are investigated via numerical analysis.Result shows that the failure mode of the stiffened plate under axial compression is the tripping of the stiffeners.Whether transverse frames are built has little effect on the ultimate strength of the stiffened plate under axial compression,which can be replaced by the degree of freedom constraint.However,when lateral pressure is present,the transverse frame cannot be simply replaced by a free-degree constraint.The longitudinal residual stress has a greater effect on the ultimate strength,whereas the effect of the transverse residual stress is smaller.Stronger unloaded edge boundary conditions can slightly enhance the stiffness and ultimate strength of the stiffened plate.Under combined axial compression and lateral pressure,the failure mode of stiffened plates changes from the tripping of stiffeners to beam-column failure,as the lateral pressure increases.The ability of stiffened plates in which transverse frames are actually built out to resist beam-column shape deformation becomes weaker with lower ultimate strength.Stronger unloaded edge boundary conditions can improve the ability of stiffened plates to resist beam-column deformation and increase the ultimate strength. 展开更多
关键词 ultimate strength full-scale stiffened plate residual stress lateral pressure
在线阅读 下载PDF
Review on integral stiffened panel of aircraft fuselage structure
3
作者 Devi Chandra Y.Nukman +2 位作者 Muhammad Adlan Azka S.M.Sapuan J.Yusuf 《Defence Technology(防务技术)》 2025年第4期1-11,共11页
The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuse... The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuselage structures.ISP is a relatively new structure in aircraft industries and is considered the most significant development in a decade.These structures have the potential to replace the conventional stiffened panel due to the emergence of manufacturing technology,including welding,high-speed machining(HSM),extruding,and bonding.Although laser beam welding(LBW)and friction stir welding(FSW)have been applied in aircraft companies,many investigations into ISP continue to be conducted.In this review article,the current state of understanding and advancement of ISP structure is addressed.A particular explanation has been given to(a)buckling performance,(b)fatigue performance of the ISP,(c)modeling and simulation aspects,and(d)the impact of manufacturing decisions in welding processes on the final structural behavior of the ISP during service.Compared to riveted panels,machined ISP had a better compressive buckling load,and FSW integral panels had a lower buckling load than riveted panels.Compressive residual stress decreased the stress intensity factor(SIF)rates,slowing down the growth of fatigue cracks as occurred in FSW and LBW ISP. 展开更多
关键词 Integral stiffened panel BUCKLING FATIGUE Friction stir welding Laser beam welding
在线阅读 下载PDF
Effect of Material and Geometric Defects on Buckling Resistance of Stiffened Panels
4
作者 Ikram Feddal Houcine Zniker +2 位作者 Hicham Mezouara Zakia Ngadi Mohamed Khalil El Kouifat 《Journal of Harbin Institute of Technology(New Series)》 2025年第4期72-81,共10页
The buckling behavior of stiffened panels is significantly influenced by material and geometric defects,making it a critical factor in ensuring structural integrity and safety.These panels are widely used in mechanica... The buckling behavior of stiffened panels is significantly influenced by material and geometric defects,making it a critical factor in ensuring structural integrity and safety.These panels are widely used in mechanical,aerospace,marine,and civil engineering applications due to their ability to enhance bending stiffness with minimal additional weight.Under high loads or stress concentrations,localized structural failures can initiate global buckling in stiffened panels.This study investigates how such defects affect the critical buckling load,stiffness,and thickness of stiffened panels.Two finite element analyses were conducted:a linear analysis to identify the initial buckling mode and a nonlinear analysis using the Riks algorithm in Abaqus CAE,incorporating localized imperfections.The simulations show that material and geometric defects can reduce buckling resistance depending on their severity. 展开更多
关键词 Finite Element Method(FEM) BUCKLING Friction Stir Welding(FSW) stiffened panels Abaqus CAE IMPERFECTIONS
在线阅读 下载PDF
Experimental and numerical studies on buckling and post-buckling behavior of T-stiffened variable stiffness panels
5
作者 Yan HUANG Yahui ZHANG +3 位作者 Bin KONG Jiefei GU Zhe WANG Puhui CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期459-470,共12页
Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness s... Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness structures,including design,manufacture,experiment,and simulation.Based on the minimum curvature radius and process schemes,two types of T-stiffened panels were designed and manufactured.Uniaxial compression tests have been carried out and the results indicate that the buckling load of variable stiffness specimens is increased by 26.0%,while the failure load is decreased by 19.6%.The influence mechanism of variable stiffness design on the buckling and failure behavior of T-stiffened panels was explicated by numerical analysis.The primary reason for the reduced strength is the significantly increased load bearing ratio of stiffeners.As experimental investigations of stiffened variable stiffness structures are very rare,this study can be considered a reference for future work. 展开更多
关键词 Variable stiffness composite BUCKLING POST-BUCKLING Finite element method stiffened panels
原文传递
Analyzing the Form-Finding of a Large-Span Transversely Stiffened Suspended Cable System: A Method Considering Construction Processes
6
作者 Junyu Chen Yanfei Wang +2 位作者 Ke Chen Shiqing Huang Xiaowen Xu 《World Journal of Engineering and Technology》 2024年第2期229-244,共16页
The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions... The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies. 展开更多
关键词 Cable Structure Long-Span Structure Form-Finding Analysis Finite Element Simulation Transverse Cable stiffening System
在线阅读 下载PDF
Impact of Stiffener Configuration on the Structural Performance of Orthotropic Steel Bridge Deck
7
作者 Pinyi Zhao Yu Qin +3 位作者 Bo Wu Yu Chen Xingyu Chen Jinsheng Wen 《Structural Durability & Health Monitoring》 2025年第5期1367-1386,共20页
The impact of longitudinal stiffener configurations on the structural performance of orthotropic steel bridge decks(OSD)was systematically investigated,with emphasis on U-shaped,T-shaped,and rectangular ribs.Finite el... The impact of longitudinal stiffener configurations on the structural performance of orthotropic steel bridge decks(OSD)was systematically investigated,with emphasis on U-shaped,T-shaped,and rectangular ribs.Finite element analysis was employed to evaluate deformation and stress distribution under three critical loading scenarios:vertical uniformload,vertical eccentric load,and lateral uniformload.Equivalentmodels ensuring identical steel usage,moment of inertia,and centroid alignment were established to compare five stiffener configurations.Results demonstrate that U-rib configurations exhibit superior performance in controlling local displacements and minimizing stress concentrations.Under eccentric loading,U-ribs significantly reduce deck displacement andmitigate stress fluctuations at critical junctions compared to alternative stiffeners.Stability analysis further reveals that U-ribs achieve stability coefficients substantially higher than open-section alternatives,particularly excelling under lateral loading due to enhanced torsional rigidity.Parametric optimization identifies key geometric thresholds where U-rib thickness exceeding 6 mm yields diminishing returns in stress reduction and stability enhancement,while deck flange thickness beyond 16 mm provides marginal improvements in displacement control despite increased material usage.An optimized design combining 6-mm U-ribs with 16-mm deck flanges is proposed,balancing structural efficiency with stringent deformation requirements for high-speed rail bridges.These findings provide foundational insights for optimizing stiffener selection and enhancing the longevity of orthotropic steel bridge decks in heavy-load applications. 展开更多
关键词 Orthotropic steel bridge deck(OSD) finite element analysis longitudinal stiffeners U-rib stress distribution
在线阅读 下载PDF
Fatigue behavior of aluminum stiffened plate subjected to random vibration loading 被引量:7
8
作者 胡海涛 李玉龙 +4 位作者 索涛 赵峰 苗应刚 薛璞 邓琼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1331-1336,共6页
Vibration tests were carried out on three types of stiffened aluminum plates with fully clamped boundaries under random base excitation. During the test, the response of the specimens was monitored using strain gauges... Vibration tests were carried out on three types of stiffened aluminum plates with fully clamped boundaries under random base excitation. During the test, the response of the specimens was monitored using strain gauges. Based on the strain history, the accumulation of fatigue damage of the stiffened plates was estimated by means of the rainflow cycle counting technique and the Miner linear damage accumulation model in the time domain. Utilizing the change of natural frequencies, a nonlinear model was fitted for predicting the fatigue damage of plate and then the foregone failure criterion of 5% reduction in natural frequency is improved. The influence of section and spacing of the stiffeners on the vibration fatigue behavior of the aluminum plate was investigated. The results show that the fatigue life of aluminum plate increases with adding either T or L section riveted stiffeners. With the same cross-sectional area of stiffener, the T section stiffened plate shows longer fatigue life than L section stiffened plate. Meanwhile, the vibration fatigue life also shows great sensitivity to the spacing between the stiffeners. 展开更多
关键词 stiffened plate vibration fatigue vibration test fatigue life natural frequency
在线阅读 下载PDF
Residual Strength of Stiffened LY12CZ Aluminum Alloy Panels with Widespread Fatigue Damage 被引量:2
9
作者 李仲 葛森 +2 位作者 吕国志 陈莉 丁惠良 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第1期48-52,共5页
Experimental and analytical investigations on the residual strength of the stiffened LY12CZ aluminum alloy panels with widespread fatigue damage (WFD) are conducted. Nine stiffened LY12CZ aluminum alloy panels with ... Experimental and analytical investigations on the residual strength of the stiffened LY12CZ aluminum alloy panels with widespread fatigue damage (WFD) are conducted. Nine stiffened LY12CZ aluminum alloy panels with three different types of damage are tested for residual strength. Each specimen is pre-cracked at rivet holes by saw cuts and subjected to a monotonically increasing tensile load until failure is occurred and the failure load is recorded. The stress intensity factors at the tips of the lead crack and the adjacent WFD cracks of the stiffened aluminum alloy panels are calculated by compounding approach and finite element method (FEM) respectively. The residual strength of the stiffened panels with WFD is evaluated by the engineering method with plastic zone linkup criterion and the FEM with apparent fracture toughness criterion respectively. The predicted residual strength agrees well with the experiment results. It indicates that in engineering practice these methods can be used for residual strength evaluation with the acceptable accuracy. It can be seen from this research that WFD can significantly reduce the residual strength and the critical crack length of the stiffened panels with WFD. The effect of WFD crack length on residual strength is also studied. 展开更多
关键词 stiffened panel widespread fatigue damage (WFD) residual strength stress intensity factor plastic zone linkup criterion
在线阅读 下载PDF
Stiffened状态方程下γ-model方法跟踪二维多介质流动 被引量:1
10
作者 张学莹 赵宁 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2004年第6期753-757,共5页
在 Stiffened状态方程下 ,运用 Level-set方程跟踪界面运动变化 ,把界面捕捉的等效方程、Level-set函数和欧拉方程组耦合 ,求解包含比热比和材料参数的耦合形式的流体力学方程组。计算方法采用二阶精度 Wave-propagation算法 ,通过对气... 在 Stiffened状态方程下 ,运用 Level-set方程跟踪界面运动变化 ,把界面捕捉的等效方程、Level-set函数和欧拉方程组耦合 ,求解包含比热比和材料参数的耦合形式的流体力学方程组。计算方法采用二阶精度 Wave-propagation算法 ,通过对气体 -液体两种流体的一维 Riemann问题、激波和气泡相互作用以及气液两种流体Richtmyer-Meshkov界面不稳定性问题进行数值模拟 ,抑制了不同介质界面两侧的非物理振荡。 展开更多
关键词 多介质流体 γ-model方法 stiffened状态方程 Level—set方法 Wave—propagation算法
在线阅读 下载PDF
Three-dimensional Cure Simulation of Stiffened Thermosetting Composite Panels 被引量:13
11
作者 Guangquan Yue,Boming Zhang ,Fuhong Dai and Shanyi Du Center for Composite Materials,Harbin Institute of Technology,Harbin 150080,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第5期467-471,共5页
Stiffened thermosetting composite panels were fabricated with co-curing processing.In the co-curing processing,the temperature distribution in the composite panels was nonuniform.An investigation into the threedimensi... Stiffened thermosetting composite panels were fabricated with co-curing processing.In the co-curing processing,the temperature distribution in the composite panels was nonuniform.An investigation into the threedimensional cure simulation of T-shape stiffened thermosetting composite panels was presented.Flexible tools and locating tools were considered in the cure simulation.Temperature distribution in the composites was predicted as a function of the autoclave temperature history.A nonlinear transient heat transfer finite element model was developed to simulate the curing process of stiffened thermosetting composite panels.And a simulation example was presented to demonstrate the use of the present finite element procedure for analyzing composite curing process.The glass/polyester structure was investigated to provide insight into the nonuniform cure process and the effect of flexible tools and locating tools on temperature distribution.Temperature gradient in the intersection between the skin and the flange was shown to be strongly dependent on the structure of the flexible tools and the thickness of the skin. 展开更多
关键词 Thermosetting composite stiffened panels CO-CURING Numerical simulation
原文传递
Optimum design of hierarchical stiffened shells for low imperfection sensitivity 被引量:13
12
作者 Bo Wang Peng Hao +5 位作者 Gang Li Jia-Xin Zhang Kai-Fan Du Kuo Tian Xiao-Jun Wang Xiao-Han Tang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期391-402,共12页
A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and... A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles. 展开更多
关键词 Hierarchical stiffened shell Imperfection sensi-tivity COLLAPSE Optimization
在线阅读 下载PDF
A study of the perforation of stiffened plates by rigid projectiles 被引量:9
13
作者 Jianguo Ning Weidong Song Jing Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第6期582-591,共10页
In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and... In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and projectile exit. In addition, some important experimental results are presented and analyzed to validate the present perforation model. In the experiments, high speed camera system is used to record the perforation process. Observations on target damage and measurements of initial velocities and residual velocities with the aid of the system are presented. Numerical simulations are carried out for projectiles against single and layered plates adopted in the experiments. The perforation process is studied and the deformation and failure modes are obtained. The predictions of numerical simulations and analytical model are found in reasonably good agreement with those of experiments, and can be used to predict the ballistic limit and residual velocity of stiffened plates perforated by rigid projectiles. 展开更多
关键词 PERFORATION PENETRATION IMPACT stiffened plate Numerical simulations Failure modes
在线阅读 下载PDF
VIBRATION AND STABILITY OF RING-STIFFENED THIN-WALLED CYLINDRICAL SHELLS CONVEYING FLUID 被引量:8
14
作者 Xinping Zhou 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第2期168-176,共9页
Based on the Fliigge shell theory, equations of motion of ring-stiffened thin-walled cylindrical shells conveying fluid are developed with the aid of the Hamilton's principle. Analysis is carried out on the vibration... Based on the Fliigge shell theory, equations of motion of ring-stiffened thin-walled cylindrical shells conveying fluid are developed with the aid of the Hamilton's principle. Analysis is carried out on the vibration and stability of the ring-stiffened shells conveying fluid, and the effects of fluid velocity, the Young modulus, the size, and the number of the ring stiffeners on the natural frequency and the instability characteristics are examined. It is found that stiffeners can reduce the number of circumferential waves for the fundamental mode, and increase the shell's natural frequency, and thus the critical fluid velocity. For the number of longitudinal half waves being equal to one, the natural frequency and the corresponding critical fluid velocity are the largest for the internal-ring stiffened shell and are the smallest for the symmetrical-ring stiffened shell. The natural frequencies and the corresponding critical fluid velocity predicted by the established model increase with the increase in the Young modulus, the size, or the number of the stiffeners. 展开更多
关键词 Flugge shell theory ring stiffener conveying fluid VIBRATION INSTABILITY
原文传递
Buckling and post-buckling behavior of titanium alloy stiffened panels under shear load 被引量:8
15
作者 Yuru SU Zhidong GUAN +3 位作者 Xin WANG Zengshan LI Jun GUO Yongjie HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第3期619-626,共8页
Titanium alloy has been increasingly applied in aviation industry due to its superior performance. However, the titanium alloy structures are less studied. This work investigates the structural behavior of Ti6Al4V tit... Titanium alloy has been increasingly applied in aviation industry due to its superior performance. However, the titanium alloy structures are less studied. This work investigates the structural behavior of Ti6Al4V titanium alloy stiffened panels under in-plane shear load by experiments and numerical analysis. After the shear tests, the buckling instability, the post-buckling process and the failure mechanism of the specimen were obtained. The Finite Element(FE) models were established with the subsequent validation verification. A parametric analysis was implemented to study the influence of stringer thickness and stringer height on the behavior of the stiffened panels. The results show that after the initial local buckling on the skin, the buckling mode jumps several times with the increase of load. The stringers twist when the load reaches a certain level, and finally the structure damages due to the plastic deformation and the global buckling. The shear clip has little effect on the buckling and failure loads. Compared to the relatively large effect on the buckling load, the influence of the stringer thickness and stringer height on the failure load is neglectable.According to the parametric analysis, the stringer thickness influences the final buckling mode and failure mode, while the stringer height affects the buckling mode transformation. 展开更多
关键词 BUCKLING Finite Element Method(FEM) IN-PLANE shear loading stiffened panel STRINGER HEIGHT STRINGER thickness Titanium alloys
原文传递
A SEMI-ANALYTICAL METHOD FOR THE VIBRATION OF AND SOUND RADIATION FROM A TWO-DIMENTIONAL BEAM-STIFFENED PLATE 被引量:6
16
作者 Haian Zhou Xiaomlng Wang Yulin Mei 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第3期231-240,共10页
A semi-analytical method based on space harmonics to investigate the vibration of and sound radiation from an infinite, fluid-loaded plate is presented. The plate is reinforced with two sets of orthogonally and equall... A semi-analytical method based on space harmonics to investigate the vibration of and sound radiation from an infinite, fluid-loaded plate is presented. The plate is reinforced with two sets of orthogonally and equally spaced beam stiffeners, which are assumed to be line forces. The response of the stiffened plate to a convected harmonic pressure in the wave-number space is obtained by adopting the Green's function and Fourier transform methods. Using the boundary conditions and space harmonic method, we establish the relationship between the stiffener forces and the vibration displacement of the plate. In this paper, the stiffener forces are expressed in terms of harmonic amplitudes of the plate displacement, which are calculated by using a numerical reduction technique. Finally, the Fourier inverse transform is employed to find expressions of the vibration and sound radiation in physical space. Agreements with existing results prove the validity of this approach and more numerical results are presented to show that this method converges rapidly. 展开更多
关键词 space harmonics sound radiation stiffened plate wave-number space FOURIERTRANSFORM
原文传递
Field testing of stiffened deep cement mixing piles under lateral cyclic loading 被引量:10
17
作者 Werasak Raongjant Meng Jing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期261-265,共5页
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subject... Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity. 展开更多
关键词 stiffened deep cement mixing pile lateral capacity cyclic lateral loading energy dissipation capacity field testing
在线阅读 下载PDF
Structural and acoustic response of a finite stiffened conical shell 被引量:5
18
作者 Xianzhong Wang Weiguo Wu Xiongliang Yao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第2期200-209,共10页
In this paper, a precise transfer matrix method is presented to calculate the struc- tural and acoustic responses of the conical shell. The governing equations of conical shells are written as a coupled set of first o... In this paper, a precise transfer matrix method is presented to calculate the struc- tural and acoustic responses of the conical shell. The governing equations of conical shells are written as a coupled set of first order differential equations. The field transfer matrix of the shell and non-homogenous term resulting from the external excitation are obtained by precise integra- tion method. After assembling the field transfer matrixes, the whole matrix describing dynamic behavior of the stiffened conical shell is obtained. Then the structural and acoustic responses of the shell are solved by obtaining unknown sound pressure coefficients. The natural frequencies of the shell are compared with the FEM results to test the validity. Furthermore, the effects of the semi-vertex angle, driving force directions and boundary conditions on the structural and acoustic responses are studied. 展开更多
关键词 conical shell precise transfer matrix method sound radiation stiffenER
原文传递
Vibration and Acoustic Radiation from Orthogonally Stiffened Infinite Circular Cylindrical Shells in Water 被引量:5
19
作者 陈军明 黄玉盈 曾革委 《China Ocean Engineering》 SCIE EI 2002年第4期437-452,共16页
Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well a... Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well as the stationary phase method, an analytic solution, which has satisfying computational effectiveness and precision, is derived for the solution to the vibration and acoustic radiation from a submerged stiffened infinite circular cylinder with both ring and axial ribs. It is easy to analyze the effect of stiffening supports in the acoustic radiation field by use of the formulas obtained by the presented method and corresponding numerical computation. It is shown that the axial-stiffeners can improve the mechanical and acoustical characteristics. Moreover, the present method can be used to study the acoustic radiation mechanism of the type of structure. 展开更多
关键词 coupling system stiffened cylindrical shell vibration and acoustic radiation analytic solution acoustic radiation mechanism
在线阅读 下载PDF
An Optimization Approach for Stiffener Layout of Composite Stiffened Panels Based on Moving Morphable Components(MMCs) 被引量:7
20
作者 Zhi Sun Ronghua Cui +3 位作者 Tianchen Cui Chang Liu Shanshan Shi Xu Guo 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第5期650-662,共13页
An explicit topology optimization method for the stiffener layout of composite stiffened panels is proposed based on moving morphable components(MMCs).The skin and stiffeners are considered as panels with different be... An explicit topology optimization method for the stiffener layout of composite stiffened panels is proposed based on moving morphable components(MMCs).The skin and stiffeners are considered as panels with different bending stiffnesses,with the use of equivalent stiffness method.Then the location and geometric properties of composite stiffeners are determined by several MMCs to perform topology optimization,which can greatly simplify the finite element model.With the objective of maximizing structural stiffness,several typical cases with various loading and boundary conditions are selected as numerical examples to demonstrate the proposed method.The numerical examples illustrate that the proposed method can provide clear stiffener layout and explicit geometry information,which is not limited within the framework of parameter and size optimization.The mechanical properties of composite stiffened panels can be fully enhanced. 展开更多
关键词 Topology optimization Composite stiffened panels stiffener layout Moving morphable components(MMCs)
原文传递
上一页 1 2 203 下一页 到第
使用帮助 返回顶部