Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-vary...Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-varying characteristics in sound propagation channels and cannot easily extract valuable waveform features.Sound propagation channels in seawater are time-and space-varying convolutional channels.In the extraction of the waveform features of underwater acoustic signals,the effect of high-accuracy underwater acoustic signal recognition is identified by eliminating the influence of time-and space-varying convolutional channels to the greatest extent possible.We propose a hash aggregate discriminative network(HADN),which combines hash learning and deep learning to minimize the time-and space-varying effects on convolutional channels and adaptively learns effective underwater waveform features to achieve high-accuracy underwater pulse waveform recognition.In the extraction of the hash features of acoustic signals,a discrete constraint between clusters within a hash feature class is introduced.This constraint can ensure that the influence of convolutional channels on hash features is minimized.In addition,we design a new loss function called aggregate discriminative loss(AD-loss).The use of AD-loss and softmax-loss can increase the discriminativeness of the learned hash features.Experimental results show that on pool and ocean datasets,which were collected in pools and oceans,respectively,by using acoustic collectors,the proposed HADN performs better than other comparative models in terms of accuracy and mAP.展开更多
As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)system...As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.展开更多
The immutability is a crucial property for blockchain applications,however,it also leads to problems such as the inability to revise illegal data on the blockchain and delete private data.Although redactable blockchai...The immutability is a crucial property for blockchain applications,however,it also leads to problems such as the inability to revise illegal data on the blockchain and delete private data.Although redactable blockchains enable on-chain modification,they suffer from inefficiency and excessive centralization,the majority of redactable blockchain schemes ignore the difficult problems of traceability and consistency check.In this paper,we present a Dynamically Redactable Blockchain based on decentralized Chameleon hash(DRBC).Specifically,we propose an Identity-Based Decentralized Chameleon Hash(IDCH)and a Version-Based Transaction structure(VT)to realize the traceability of transaction modifications in a decentralized environment.Then,we propose an efficient block consistency check protocol based on the Bloom filter tree,which can realize the consistency check of transactions with extremely low time and space cost.Security analysis and experiment results demonstrate the reliability of DRBC and its significant advantages in a decentralized environment.展开更多
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam...Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.展开更多
Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third...Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a designed multi-attention mechanism focuses on important local features during the feature extraction stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images. The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques, the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset. Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and demonstrates strong practicality.展开更多
The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos ...The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corre- sponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability.展开更多
HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The se...HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network,and thus much energy can be saved. In addition,the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network,it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol,especially in large-scale wireless sensor networks.展开更多
In this paper, we propose a new online system that can quickly detect malicious spam emails and adapt to the changes in the email contents and the Uniform Resource Locator (URL) links leading to malicious websites by ...In this paper, we propose a new online system that can quickly detect malicious spam emails and adapt to the changes in the email contents and the Uniform Resource Locator (URL) links leading to malicious websites by updating the system daily. We introduce an autonomous function for a server to generate training examples, in which double-bounce emails are automatically collected and their class labels are given by a crawler-type software to analyze the website maliciousness called SPIKE. In general, since spammers use botnets to spread numerous malicious emails within a short time, such distributed spam emails often have the same or similar contents. Therefore, it is not necessary for all spam emails to be learned. To adapt to new malicious campaigns quickly, only new types of spam emails should be selected for learning and this can be realized by introducing an active learning scheme into a classifier model. For this purpose, we adopt Resource Allocating Network with Locality Sensitive Hashing (RAN-LSH) as a classifier model with a data selection function. In RAN-LSH, the same or similar spam emails that have already been learned are quickly searched for a hash table in Locally Sensitive Hashing (LSH), in which the matched similar emails located in “well-learned” are discarded without being used as training data. To analyze email contents, we adopt the Bag of Words (BoW) approach and generate feature vectors whose attributes are transformed based on the normalized term frequency-inverse document frequency (TF-IDF). We use a data set of double-bounce spam emails collected at National Institute of Information and Communications Technology (NICT) in Japan from March 1st, 2013 until May 10th, 2013 to evaluate the performance of the proposed system. The results confirm that the proposed spam email detection system has capability of detecting with high detection rate.展开更多
Recently,several PC oracle based side-channel attacks have been proposed against Kyber.However,most of them focus on unprotected implementations and masking is considered as a counter-measure.In this study,we extend P...Recently,several PC oracle based side-channel attacks have been proposed against Kyber.However,most of them focus on unprotected implementations and masking is considered as a counter-measure.In this study,we extend PC oracle based side-channel attacks to the second-order scenario and successfully conduct key-recovery attacks on the first-order masked Kyber.Firstly,we analyze the potential joint information leakage.Inspired by the binary PC oracle based attack proposed by Qin et al.at Asiacrypt 2021,we identify the 1-bit leakage scenario in the masked Keccak implementation.Moreover,we modify the ciphertexts construction described by Tanaka et al.at CHES 2023,extending the leakage scenario from 1-bit to 32-bit.With the assistance of TVLA,we validate these leakages through experiments.Secondly,for these two scenarios,we construct a binary PC oracle based on t-test and a multiple-valued PC oracle based on neural networks.Furthermore,we conduct practical side-channel attacks on masked Kyber by utilizing our oracles,with the implementation running on an ARM Cortex-M4 microcontroller.The demonstrated attacks require a minimum of 15788 and 648 traces to fully recover the key of Kyber768 in the 1-bit leakage scenario and the 32-bit leakage scenario,respectively.Our analysis may also be extended to attack other post-quantum schemes that use the same masked hash function.Finally,we apply the shuffling strategy to the first-order masked imple-mentation of the Kyber and perform leakage tests.Experimental results show that the combination strategy of shuffling and masking can effectively resist our proposed attacks.展开更多
Lung medical image retrieval based on content similarity plays an important role in computer-aided diagnosis of lung cancer.In recent years,binary hashing has become a hot topic in this field due to its compressed sto...Lung medical image retrieval based on content similarity plays an important role in computer-aided diagnosis of lung cancer.In recent years,binary hashing has become a hot topic in this field due to its compressed storage and fast query speed.Traditional hashing methods often rely on highdimensional features based hand-crafted methods,which might not be optimally compatible with lung nodule images.Also,different hashing bits contribute to the image retrieval differently,and therefore treating the hashing bits equally affects the retrieval accuracy.Hence,an image retrieval method of lung nodule images is proposed with the basis on convolutional neural networks and hashing.First,apre-trained and fine-tuned convolutional neural network is employed to learn multilevel semantic features of the lung nodules.Principal components analysis is utilized to remove redundant information and preserve informative semantic features of the lung nodules.Second,the proposed method relies on nine sign labels of lung nodules for the training set,and the semantic feature is combined to construct hashing functions.Finally,returned lung nodule images can be easily ranked with the query-adaptive search method based on weighted Hamming distance.Extensive experiments and evaluations on the dataset demonstrate that the proposed method can significantly improve the expression ability of lung nodule images,which further validates the effectiveness of the proposed method.展开更多
The homomorphic hash algorithm(HHA)is introduced to help on-the-fly verify the vireless sensor network(WSN)over-the-air programming(OAP)data based on rateless codes.The receiver calculates the hash value of a group of...The homomorphic hash algorithm(HHA)is introduced to help on-the-fly verify the vireless sensor network(WSN)over-the-air programming(OAP)data based on rateless codes.The receiver calculates the hash value of a group of data by homomorphic hash function,and then it compares the hash value with the receiving message digest.Because the feedback channel is deliberately removed during the distribution process,the rateless codes are often vulnerable when they face security issues such as packets contamination or attack.This method prevents contaminating or attack on rateless codes and reduces the potential risks of decoding failure.Compared with the SHA1 and MD5,HHA,which has a much shorter message digest,will deliver more data.The simulation results show that to transmit and verify the same amount of OAP data,HHA method sends 17.9% to 23.1%fewer packets than MD5 and SHA1 under different packet loss rates.展开更多
Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),a...Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.展开更多
Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a s...Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.展开更多
A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then...A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then, each block is divided into components, and the nodes and weighted edges are well defined from these components and their relations. Namely, the WCDN closely related to the original message is established. Furthermore, the node dynamics of the WCDN are chosen as a chaotic map. After chaotic iterations, quantization and exclusive-or operations, the fixed-length hash value is obtained. This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN, leading to very different hash values. Analysis and simulation show that the scheme possesses good statistical properties, excellent confusion and diffusion, strong collision resistance and high efficiency.展开更多
基金partially supported by the National Key Research and Development Program of China(No.2018 AAA0100400)the Natural Science Foundation of Shandong Province(Nos.ZR2020MF131 and ZR2021ZD19)the Science and Technology Program of Qingdao(No.21-1-4-ny-19-nsh).
文摘Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-varying characteristics in sound propagation channels and cannot easily extract valuable waveform features.Sound propagation channels in seawater are time-and space-varying convolutional channels.In the extraction of the waveform features of underwater acoustic signals,the effect of high-accuracy underwater acoustic signal recognition is identified by eliminating the influence of time-and space-varying convolutional channels to the greatest extent possible.We propose a hash aggregate discriminative network(HADN),which combines hash learning and deep learning to minimize the time-and space-varying effects on convolutional channels and adaptively learns effective underwater waveform features to achieve high-accuracy underwater pulse waveform recognition.In the extraction of the hash features of acoustic signals,a discrete constraint between clusters within a hash feature class is introduced.This constraint can ensure that the influence of convolutional channels on hash features is minimized.In addition,we design a new loss function called aggregate discriminative loss(AD-loss).The use of AD-loss and softmax-loss can increase the discriminativeness of the learned hash features.Experimental results show that on pool and ocean datasets,which were collected in pools and oceans,respectively,by using acoustic collectors,the proposed HADN performs better than other comparative models in terms of accuracy and mAP.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R343),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia for funding this research work through the project number NBU-FFR-2025-1092-10.
文摘As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.
基金supported in part by the National Key R&D Program of China under project 2022YFB2702901the Guangxi Natural Science Foundation under grants 2024GXNSFDA010064 and 2024GXNSFAA010453+5 种基金the National Natural Science Foundation of China under projects 62172119,62362013,U21A20467 and 72192801Zhejiang Provincial Natural Science Foundation of China under grant LZ23F020012Innovation Project of GUET Graduate Education under grants 2023YCXS070the Guangxi Young Teachers'Basic Ability Improvement Program under grant 2024KY0224Lion Rock Labs of Cyberspace Security under grant LRL24-1-C003one of the research outcomes of the Xiong'an Autonomous and Controllable Blockchain Underlying Technology Platform Project(2020).
文摘The immutability is a crucial property for blockchain applications,however,it also leads to problems such as the inability to revise illegal data on the blockchain and delete private data.Although redactable blockchains enable on-chain modification,they suffer from inefficiency and excessive centralization,the majority of redactable blockchain schemes ignore the difficult problems of traceability and consistency check.In this paper,we present a Dynamically Redactable Blockchain based on decentralized Chameleon hash(DRBC).Specifically,we propose an Identity-Based Decentralized Chameleon Hash(IDCH)and a Version-Based Transaction structure(VT)to realize the traceability of transaction modifications in a decentralized environment.Then,we propose an efficient block consistency check protocol based on the Bloom filter tree,which can realize the consistency check of transactions with extremely low time and space cost.Security analysis and experiment results demonstrate the reliability of DRBC and its significant advantages in a decentralized environment.
基金supported by Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.
基金supported by the NationalNatural Science Foundation of China(No.61862041).
文摘Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a designed multi-attention mechanism focuses on important local features during the feature extraction stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images. The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques, the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset. Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and demonstrates strong practicality.
基金supported by Key Program of Natural Science Fund of Tianjin of China (Grant No 07JCZDJC06600)
文摘The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corre- sponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability.
基金Project(07JJ1010) supported by Hunan Provincial Natural Science Foundation of ChinaProjects(2006AA01Z202, 2006AA01Z199) supported by the National High-Tech Research and Development Program of China+2 种基金Project(7002102) supported by the City University of Hong Kong, Strategic Research Grant (SRG)Project(IRT-0661) supported by the Program for Changjiang Scholars and Innovative Research Team in UniversityProject(NCET-06-0686) supported by the Program for New Century Excellent Talents in University
文摘HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network,and thus much energy can be saved. In addition,the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network,it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol,especially in large-scale wireless sensor networks.
文摘In this paper, we propose a new online system that can quickly detect malicious spam emails and adapt to the changes in the email contents and the Uniform Resource Locator (URL) links leading to malicious websites by updating the system daily. We introduce an autonomous function for a server to generate training examples, in which double-bounce emails are automatically collected and their class labels are given by a crawler-type software to analyze the website maliciousness called SPIKE. In general, since spammers use botnets to spread numerous malicious emails within a short time, such distributed spam emails often have the same or similar contents. Therefore, it is not necessary for all spam emails to be learned. To adapt to new malicious campaigns quickly, only new types of spam emails should be selected for learning and this can be realized by introducing an active learning scheme into a classifier model. For this purpose, we adopt Resource Allocating Network with Locality Sensitive Hashing (RAN-LSH) as a classifier model with a data selection function. In RAN-LSH, the same or similar spam emails that have already been learned are quickly searched for a hash table in Locally Sensitive Hashing (LSH), in which the matched similar emails located in “well-learned” are discarded without being used as training data. To analyze email contents, we adopt the Bag of Words (BoW) approach and generate feature vectors whose attributes are transformed based on the normalized term frequency-inverse document frequency (TF-IDF). We use a data set of double-bounce spam emails collected at National Institute of Information and Communications Technology (NICT) in Japan from March 1st, 2013 until May 10th, 2013 to evaluate the performance of the proposed system. The results confirm that the proposed spam email detection system has capability of detecting with high detection rate.
基金National Natural Science Foundation of China(62472397)Innovation Program for Quantum Science and Technology(2021ZD0302902)。
文摘Recently,several PC oracle based side-channel attacks have been proposed against Kyber.However,most of them focus on unprotected implementations and masking is considered as a counter-measure.In this study,we extend PC oracle based side-channel attacks to the second-order scenario and successfully conduct key-recovery attacks on the first-order masked Kyber.Firstly,we analyze the potential joint information leakage.Inspired by the binary PC oracle based attack proposed by Qin et al.at Asiacrypt 2021,we identify the 1-bit leakage scenario in the masked Keccak implementation.Moreover,we modify the ciphertexts construction described by Tanaka et al.at CHES 2023,extending the leakage scenario from 1-bit to 32-bit.With the assistance of TVLA,we validate these leakages through experiments.Secondly,for these two scenarios,we construct a binary PC oracle based on t-test and a multiple-valued PC oracle based on neural networks.Furthermore,we conduct practical side-channel attacks on masked Kyber by utilizing our oracles,with the implementation running on an ARM Cortex-M4 microcontroller.The demonstrated attacks require a minimum of 15788 and 648 traces to fully recover the key of Kyber768 in the 1-bit leakage scenario and the 32-bit leakage scenario,respectively.Our analysis may also be extended to attack other post-quantum schemes that use the same masked hash function.Finally,we apply the shuffling strategy to the first-order masked imple-mentation of the Kyber and perform leakage tests.Experimental results show that the combination strategy of shuffling and masking can effectively resist our proposed attacks.
基金Supported by the National Natural Science Foundation of China(61373100)the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems(BUAA-VR-16KF-13,BUAA-VR-17KF-14,BUAA-VR-17KF-15)the Research Project Supported by Shanxi Scholarship Council of China(2016-038)
文摘Lung medical image retrieval based on content similarity plays an important role in computer-aided diagnosis of lung cancer.In recent years,binary hashing has become a hot topic in this field due to its compressed storage and fast query speed.Traditional hashing methods often rely on highdimensional features based hand-crafted methods,which might not be optimally compatible with lung nodule images.Also,different hashing bits contribute to the image retrieval differently,and therefore treating the hashing bits equally affects the retrieval accuracy.Hence,an image retrieval method of lung nodule images is proposed with the basis on convolutional neural networks and hashing.First,apre-trained and fine-tuned convolutional neural network is employed to learn multilevel semantic features of the lung nodules.Principal components analysis is utilized to remove redundant information and preserve informative semantic features of the lung nodules.Second,the proposed method relies on nine sign labels of lung nodules for the training set,and the semantic feature is combined to construct hashing functions.Finally,returned lung nodule images can be easily ranked with the query-adaptive search method based on weighted Hamming distance.Extensive experiments and evaluations on the dataset demonstrate that the proposed method can significantly improve the expression ability of lung nodule images,which further validates the effectiveness of the proposed method.
基金Supported by the National Science and Technology Support Program(Y2140161A5)the National High Technology Research and Development Program of China(863Program)(O812041A04)
文摘The homomorphic hash algorithm(HHA)is introduced to help on-the-fly verify the vireless sensor network(WSN)over-the-air programming(OAP)data based on rateless codes.The receiver calculates the hash value of a group of data by homomorphic hash function,and then it compares the hash value with the receiving message digest.Because the feedback channel is deliberately removed during the distribution process,the rateless codes are often vulnerable when they face security issues such as packets contamination or attack.This method prevents contaminating or attack on rateless codes and reduces the potential risks of decoding failure.Compared with the SHA1 and MD5,HHA,which has a much shorter message digest,will deliver more data.The simulation results show that to transmit and verify the same amount of OAP data,HHA method sends 17.9% to 23.1%fewer packets than MD5 and SHA1 under different packet loss rates.
文摘Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.
文摘Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.
基金Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103223110003)The Ministry of Education Research in the Humanities and Social Sciences Planning Fund, China (Grant No. 12YJAZH120)
文摘A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then, each block is divided into components, and the nodes and weighted edges are well defined from these components and their relations. Namely, the WCDN closely related to the original message is established. Furthermore, the node dynamics of the WCDN are chosen as a chaotic map. After chaotic iterations, quantization and exclusive-or operations, the fixed-length hash value is obtained. This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN, leading to very different hash values. Analysis and simulation show that the scheme possesses good statistical properties, excellent confusion and diffusion, strong collision resistance and high efficiency.