期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem 被引量:1
1
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
在线阅读 下载PDF
An Improved Harris Hawk Optimization Algorithm
2
作者 GuangYa Chong Yongliang YUAN 《Mechanical Engineering Science》 2024年第1期21-25,共5页
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F... Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems. 展开更多
关键词 harris hawk optimization algorithm chaotic mapping cosine strategy function optimization
在线阅读 下载PDF
基于改进Harris Hawk优化算法的虚拟电厂优化调度研究
3
作者 丁君 秦浩庭 +3 位作者 苏鹏 曾雪松 李竞轩 郝巍 《可再生能源》 北大核心 2025年第6期829-838,共10页
文章针对虚拟电厂的优化调度问题,提出了一种基于改进Harris Hawk优化算法的调度策略。该策略旨在提高包含光伏、风力发电、燃料电池以及热电联产单元的虚拟电厂的经济性和环境友好性,并引入电动汽车和储能系统分别作为灵活储备和旋转备... 文章针对虚拟电厂的优化调度问题,提出了一种基于改进Harris Hawk优化算法的调度策略。该策略旨在提高包含光伏、风力发电、燃料电池以及热电联产单元的虚拟电厂的经济性和环境友好性,并引入电动汽车和储能系统分别作为灵活储备和旋转备用,建立虚拟电厂灵活性聚合模型,通过改进的Harris Hawk优化算法调度方案。最后进行全面的日前调度和短期调度分析。结果表明,该策略能有效应对可再生能源的不确定性,实现对联络线功率的响应跟随。研究结果为虚拟电厂的协调优化调度提供了新的思路和方法。 展开更多
关键词 虚拟电厂 改进harris hawk优化算法 灵活性聚合 日前和短期调度
在线阅读 下载PDF
An Improved Harris Hawks Optimization Algorithm with Multi-strategy for Community Detection in Social Network 被引量:8
4
作者 Farhad Soleimanian Gharehchopogh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1175-1197,共23页
The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing conne... The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing connections between things. Communities are node clusters with many internal links but minimal intergroup connections. Although community detection has attracted much attention in social media research, most face functional weaknesses because the structure of society is unclear or the characteristics of nodes in society are not the same. Also, many existing algorithms have complex and costly calculations. This paper proposes different Harris Hawk Optimization (HHO) algorithm methods (such as Improved HHO Opposition-Based Learning(OBL) (IHHOOBL), Improved HHO Lévy Flight (IHHOLF), and Improved HHO Chaotic Map (IHHOCM)) were designed to balance exploitation and exploration in this algorithm for community detection in the social network. The proposed methods are evaluated on 12 different datasets based on NMI and modularity criteria. The findings reveal that the IHHOOBL method has better detection accuracy than IHHOLF and IHHOCM. Also, to offer the efficiency of the , state-of-the-art algorithms have been used as comparisons. The improvement percentage of IHHOOBL compared to the state-of-the-art algorithm is about 7.18%. 展开更多
关键词 Bionic algorithm Complex network Community detection harris hawk optimization algorithm Opposition-based learning Levy flight Chaotic maps
在线阅读 下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:13
5
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 Flyrock harris hawks optimization(HHO) Multi-layer perceptron(MLP) Random forest(RF) support vector machine(sVM) Whale optimization algorithm(WOA)
在线阅读 下载PDF
Computing Connected Resolvability of Graphs Using Binary Enhanced Harris Hawks Optimization 被引量:1
6
作者 Basma Mohamed Linda Mohaisen Mohamed Amin 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2349-2361,共13页
In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distanc... In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension. 展开更多
关键词 Connected resolving set binary optimization harris hawks algorithm
在线阅读 下载PDF
Crisscross Harris Hawks Optimizer for Global Tasks and Feature Selection 被引量:1
7
作者 Xin Wang Xiaogang Dong +1 位作者 Yanan Zhang Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1153-1174,共22页
Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it under... Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it undergoes weak global search capability because of the levy distribution in its optimization process. In this paper, a variant of HHO is proposed using Crisscross Optimization Algorithm (CSO) to compensate for the shortcomings of original HHO. The novel developed optimizer called Crisscross Harris Hawks Optimizer (CCHHO), which can effectively achieve high-quality solutions with accelerated convergence on a variety of optimization tasks. In the proposed algorithm, the vertical crossover strategy of CSO is used for adjusting the exploitative ability adaptively to alleviate the local optimum;the horizontal crossover strategy of CSO is considered as an operator for boosting explorative trend;and the competitive operator is adopted to accelerate the convergence rate. The effectiveness of the proposed optimizer is evaluated using 4 kinds of benchmark functions, 3 constrained engineering optimization issues and feature selection problems on 13 datasets from the UCI repository. Comparing with nine conventional intelligence algorithms and 9 state-of-the-art algorithms, the statistical results reveal that the proposed CCHHO is significantly more effective than HHO, CSO, CCNMHHO and other competitors, and its advantage is not influenced by the increase of problems’ dimensions. Additionally, experimental results also illustrate that the proposed CCHHO outperforms some existing optimizers in working out engineering design optimization;for feature selection problems, it is superior to other feature selection methods including CCNMHHO in terms of fitness, error rate and length of selected features. 展开更多
关键词 harris hawks optimization Bioinspired algorithm Global optimization Engineering optimization Feature selection
在线阅读 下载PDF
基于Harris Hawks优化算法的介质波导滤波器优化设计 被引量:2
8
作者 舒佩文 麦健业 褚庆昕 《电波科学学报》 CSCD 北大核心 2021年第5期787-796,共10页
Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文... Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文中首先描述了HHO算法流程,并结合滤波器优化问题提出了一种通用框架;然后基于稳态假设对HHO算法的更新方程进行了理论分析,依据所导出的方程分析了算法的动态特性及收敛行为;最后利用HHO算法实现了两款介质波导滤波器的优化设计.为验证算法性能,将本文算法与三个著名的群智能算法进行比较.实验结果表明,HHO算法的收敛速度、效率和精度都明显优于目前业内主流应用的自适应差分进化算法、花粉授粉优化算法和灰狼优化算法. 展开更多
关键词 群智能优化算法 5G移动通信 harris hawks优化(HHO)算法 滤波器优化设计 介质波导滤波器
在线阅读 下载PDF
Optimization of Resource Allocation in Unmanned Aerial Vehicles Based on Swarm Intelligence Algorithms
9
作者 Siling Feng Yinjie Chen +1 位作者 Mengxing Huang Feng Shu 《Computers, Materials & Continua》 SCIE EI 2023年第5期4341-4355,共15页
Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby ext... Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby extending the lifetime of this energy-constrained device.This paper investigates the optimization of resource allocation in light of the fact that power transfer and data transmission cannot be performed simultaneously.In this paper,we propose an optimization strategy for the resource allocation of UAVs in sensor communication networks.It is a practical solution to the problem of marine sensor networks that are located far from shore and have limited power.A corresponding system model is summarized based on the scenario and existing theoretical works.The minimum throughputmaximizing object is then formulated as an optimization problem.As swarm intelligence algorithms are utilized effectively in numerous fields,this paper chose to solve the formed optimization problem using the Harris Hawks Optimization and Whale Optimization Algorithms.This paper introduces a method for translating multi-decisions into a row vector in order to adapt swarm intelligence algorithms to the problem,as joint time and energy optimization have two sets of variables.The proposed method performs well in terms of stability and duration.Finally,performance is evaluated through numerical experiments.Simulation results demonstrate that the proposed method performs admirably in the given scenario. 展开更多
关键词 Resource allocation unmanned aerial vehicles harris hawks optimization whale optimization algorithm
在线阅读 下载PDF
基于IHHO-Stacking集成模型的车辆驾驶性评估
10
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 sTACKING 集成模型 客观评价
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
11
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICs cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
基于IHHO-LSTM-KAN的大坝变形预测模型
12
作者 丁勇康 远近 +3 位作者 毛延翩 都旭煌 齐智勇 苏怀智 《水利水电技术(中英文)》 北大核心 2025年第5期170-182,共13页
【目的】全生命周期高精度的变形预测是评估大坝服役性态和保障大坝安全运行的关键方法。目前预测模型存在数据特征相关性解析不足、对短时序数据预测精度不高、忽视时序持续增长的特性、模型训练易陷入局部最优等问题。【方法】提出一... 【目的】全生命周期高精度的变形预测是评估大坝服役性态和保障大坝安全运行的关键方法。目前预测模型存在数据特征相关性解析不足、对短时序数据预测精度不高、忽视时序持续增长的特性、模型训练易陷入局部最优等问题。【方法】提出一种大坝变形预测模型,利用长短期记忆网络(LSTM)捕捉时序长短期依赖关系,并耦合KAN机制改进网络全连接层结构以增强对长短时序复杂数据关系的表征能力,采用多策略改进的哈里斯鹰优化算法(IHHO)探索超参数最优组合,从而优化模型结构、解决梯度问题、加速训练收敛并提高预测性能。【结果】实例表明,该模型对长短时序的预测精度和泛化能力均优于其他深度学习模型,收敛速度优于其他智能优化算法,KAN机制对短时序预测的改进效果较为明显。【结论】所建模型具有较好的稳健性与适用性,可为大坝全生命周期的安全监测提供技术参考。 展开更多
关键词 大坝变形预测 短时间序列 长短期记忆网络 KAN 改进哈里斯鹰优化算法 变形 影响因素
在线阅读 下载PDF
An Improved Jump Spider Optimization for Network Traffic Identification Feature Selection 被引量:1
13
作者 Hui Xu Yalin Hu +1 位作者 Weidong Cao Longjie Han 《Computers, Materials & Continua》 SCIE EI 2023年第9期3239-3255,共17页
The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for to... The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features. 展开更多
关键词 Network traffic identification feature selection jumping spider optimization algorithm harris hawk optimization small hole imaging
在线阅读 下载PDF
基于哈里斯鹰和改进NMS算法的光伏模型参数辨识
14
作者 钟胜铨 陈志聪 《电气开关》 2025年第4期26-31,35,共7页
光伏模型参数的辨识对于光伏系统的仿真、评估和控制至关重要。尽管已经提出了许多方法,但实现快速、准确、可靠的参数辨识仍然具有挑战性。提出了一种基于哈里斯鹰优化(HHO)和改进Nelder-Mead单纯形(INMS)的新型混合算法(HHO-INMS),用... 光伏模型参数的辨识对于光伏系统的仿真、评估和控制至关重要。尽管已经提出了许多方法,但实现快速、准确、可靠的参数辨识仍然具有挑战性。提出了一种基于哈里斯鹰优化(HHO)和改进Nelder-Mead单纯形(INMS)的新型混合算法(HHO-INMS),用于实现光伏模型参数的辨识。HHO-INMS结合了HHO强大的全局探索和INMS强大的局部开发的优点,克服了HHO计算量大、易陷入局部最小值的缺点。并且使用单纯形的主对角线向量代替最差顶点来改进原NMS的收缩操作,进一步增强了收敛性。在文献中常用的R.T.C法国太阳能电池和Photowatt-PWP201光伏组件的实验数据集上,HHO-INMS与一些最新的算法进行了比较。实验结果表明HHO-INMS各方面优于其他对比算法,尤其是在收敛性方面,并且在算法时间消耗上也取得了最好的效果。 展开更多
关键词 光伏模型 参数辨识 哈里斯鹰优化 Nelder-Mead单纯形 混合优化算法
在线阅读 下载PDF
Towards Addressing Challenges in Efficient Alzheimer’s Disease Detection in Limited Resource Environments
15
作者 Walaa N.Ismail Fathimathul Rajeena P.P. Mona A.S.Ali 《Computer Modeling in Engineering & Sciences》 2025年第6期3709-3741,共33页
Early detection of Alzheimer’s disease(AD)is crucial,particularly in resource-constrained medical settings.This study introduces an optimized deep learning framework that conceptualizes neural networks as computatio... Early detection of Alzheimer’s disease(AD)is crucial,particularly in resource-constrained medical settings.This study introduces an optimized deep learning framework that conceptualizes neural networks as computational“sensors”for neurodegenerative diagnosis,incorporating feature selection,selective layer unfreezing,pruning,and algorithmic optimization.An enhanced lightweight hybrid DenseNet201 model is proposed,integrating layer pruning strategies for feature selection and bioinspired optimization techniques,including Genetic Algorithm(GA)and Harris Hawks Optimization(HHO),for hyperparameter tuning.Layer pruning helps identify and eliminate less significant features,while model parameter optimization further enhances performance by fine-tuning critical hyperparameters,improving convergence speed,and maximizing classification accuracy.GA is also used to reduce the number of selected features further.A detailed comparison of six AD classification model setups is provided to illustrate the variations and their impact on performance.Applying the lightweight hybrid DenseNet201 model for MRI-based AD classification yielded an impressive baseline F1 score of 98%.Overall feature reduction reached 51.75%,enhancing interpretability and lowering processing costs.The optimized models further demonstrated perfect generalization,achieving 100%classification accuracy.These findings underscore the potential of advanced optimization techniques in developing efficient and accurate AD diagnostic tools suitable for environments with limited computational resources. 展开更多
关键词 Artificial intelligence Alzheimer’s disease harris hawks optimization genetic algorithm
暂未订购
基于XGBoost算法的隧道爆破参数优化研究
16
作者 余志伟 吕继娟 陈馨怡 《延边大学学报(自然科学版)》 2025年第3期92-96,共5页
为了更好地优化隧道爆破参数,提出了一种基于极端梯度提升算法(XGBoost算法)的隧道爆破参数优化模型.该模型使用P次K折交叉验证和哈里斯鹰优化算法对XGBoost算法的适应度和超参数取值进行优化,以提高隧道爆破参数的准确率和精度.实验表... 为了更好地优化隧道爆破参数,提出了一种基于极端梯度提升算法(XGBoost算法)的隧道爆破参数优化模型.该模型使用P次K折交叉验证和哈里斯鹰优化算法对XGBoost算法的适应度和超参数取值进行优化,以提高隧道爆破参数的准确率和精度.实验表明:该模型的平均模拟准确率和绝对偏差分别为95.47%、1.08%,平均实际精度和绝对偏差分别为0.92、0.012,且该模型的性能均显著优于BA算法、GA算法、SA算法和传统XGBoost算法.上述表明该模型具有良好的调参准确性和精度,可为隧道施工中的爆破参数选择提供良好参考. 展开更多
关键词 爆破参数 极端梯度提升算法 哈里斯鹰优化算法 交叉验证 隧道施工
在线阅读 下载PDF
基于IHHO-SVM的电动汽车车内声品质评价模型的研究
17
作者 王洁 邱溢阳 +3 位作者 刘天伦 李明荣 丁羽萱 夏周洋 《软件工程》 2025年第6期73-78,共6页
针对电动汽车内部噪声特性变化,构建适用于电动汽车的声品质评价预测模型。对预处理的车内噪声样本进行主客观评价分析,筛选出有效的主观评价结果,并利用随机森林特征分析,提取车内噪声客观评价特征,构建模型样本库。为提高预测精度和... 针对电动汽车内部噪声特性变化,构建适用于电动汽车的声品质评价预测模型。对预处理的车内噪声样本进行主客观评价分析,筛选出有效的主观评价结果,并利用随机森林特征分析,提取车内噪声客观评价特征,构建模型样本库。为提高预测精度和泛化能力,提出基于改进哈里斯鹰算法(IHHO)的支持向量机(SVM)模型。对比SVM、HHO-SVM和IHHO-SVM 3个模型匀速和加速工况下的均方误差(MSE)和决定系数(R2)。其中,IHHO-SVM的R2分别为0.983和0.984,预测结果的相对误差更低;MSE分别为0.056和0.012。以上结果验证了IHHO-SVM模型在电动汽车声品质评价中的优越性。 展开更多
关键词 电动汽车 声品质 哈里斯鹰算法 sVM模型 评价系统
在线阅读 下载PDF
基于改进HHO-LSTM-Self-Attention的质子交换膜燃料电池剩余使用寿命预测
18
作者 蒋剑 杜董生 苏林 《综合智慧能源》 2025年第6期47-56,共10页
质子交换膜燃料电池(PEMFC)在诸多领域有着广泛应用,但其性能衰退会降低功率输出和能源转换效率、缩短使用寿命,准确预测剩余使用寿命对维护系统、降低成本及保障供电稳定极为关键。基于PEMFC功率随时间的变化趋势,提出了一种结合改进... 质子交换膜燃料电池(PEMFC)在诸多领域有着广泛应用,但其性能衰退会降低功率输出和能源转换效率、缩短使用寿命,准确预测剩余使用寿命对维护系统、降低成本及保障供电稳定极为关键。基于PEMFC功率随时间的变化趋势,提出了一种结合改进的哈里斯鹰优化(HHO)算法、长短期记忆(LSTM)网络和自注意力(Self-Attention)机制的PEMFC剩余使用寿命预测模型。基于电流和电压数据关系得出时间-功率变化曲线,采用小波自适应去噪和指数平滑相结合的方法对时间-功率数据进行分解去噪和重构;针对LSTM训练参数过多、计算量大等不足,提出了一种Logistics混沌映射与HHO算法相结合来优化LSTM的方法,以提高模型的训练速度和预测精度;基于Self-Attention具有聚焦关键信息和提高模型训练准确率的优点,构建了HHO-LSTM-Self-Attention预测模型。试验结果表明,与HHO-LSTM,LSTM,麻雀搜索算法(SSA)-LSTM,粒子群优化(PSO)-LSTM等预测模型相比,该模型具有更高的预测精度。 展开更多
关键词 质子交换膜燃料电池 剩余使用寿命预测 哈里斯鹰优化算法 长短期记忆神经网络 自注意力机制
在线阅读 下载PDF
基于INSHHO算法的多能源发电系统优化调度 被引量:1
19
作者 邹红波 杨钦贺 +1 位作者 陈俊廷 柴延辉 《电力系统及其自动化学报》 CSCD 北大核心 2024年第11期11-18,共8页
为解决风-光-水-火-抽水蓄能多能源发电系统优化调度问题,建立以系统经济效益最高、污染排放最少和系统弃电量最少为目标的多能源发电系统优化调度模型;通过多目标非支配排序哈里斯鹰优化算法与多目标遗传算法的结合,并采用Skew Tent混... 为解决风-光-水-火-抽水蓄能多能源发电系统优化调度问题,建立以系统经济效益最高、污染排放最少和系统弃电量最少为目标的多能源发电系统优化调度模型;通过多目标非支配排序哈里斯鹰优化算法与多目标遗传算法的结合,并采用Skew Tent混沌映射进行种群初始化,从而提出改进的多目标非支配排序哈里斯鹰优化算法,对多能源发电系统优化调度模型进行求解;最后对真实算例进行仿真分析,验证了模型的合理性以及所提算法的优越性。 展开更多
关键词 可再生能源 多目标优化 多能源发电系统 哈里斯鹰优化(INsHHO)算法 混沌映射
在线阅读 下载PDF
基于改进HHO⁃LSTM的滚动轴承故障诊断研究 被引量:1
20
作者 邵良杉 朱思佳 《机械强度》 CAS CSCD 北大核心 2024年第1期17-23,共7页
为了解决滚动轴承故障诊断问题,提出一种将改进哈里斯鹰优化(Harris Hawks Optimization,HHO)算法和长短时记忆(Long Short⁃Term Memory,LSTM)网络相融合的智能诊断模型IHHO⁃LSTM。HHO算法在求解过程中容易陷入局部最优、收敛缓慢,基于... 为了解决滚动轴承故障诊断问题,提出一种将改进哈里斯鹰优化(Harris Hawks Optimization,HHO)算法和长短时记忆(Long Short⁃Term Memory,LSTM)网络相融合的智能诊断模型IHHO⁃LSTM。HHO算法在求解过程中容易陷入局部最优、收敛缓慢,基于这些问题引入Cauchy分布函数和模拟退火(Simulated Annealing,SA)算法,拓展全局搜索的广泛性,避免陷入局部最优。运用改进的HHO算法快速确定LSTM模型的最优超参数值,从而提高时序诊断精度。利用凯斯西储大学滚动轴承实验数据进行故障诊断实验,结果表明,IHHO⁃LSTM模型能够实现对滚动轴承的特征提取和故障诊断,模型准确率高达近97%。 展开更多
关键词 滚动轴承 深度学习 哈里斯鹰优化算法 长短时记忆网络 工业大数据 故障诊断
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部