期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem 被引量:1
1
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
在线阅读 下载PDF
An Improved Harris Hawk Optimization Algorithm
2
作者 GuangYa Chong Yongliang YUAN 《Mechanical Engineering Science》 2024年第1期21-25,共5页
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F... Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems. 展开更多
关键词 harris hawk optimization algorithm chaotic mapping cosine strategy function optimization
在线阅读 下载PDF
Multi-Neighborhood Enhanced Harris Hawks Optimization for Efficient Allocation of Hybrid Renewable Energy System with Cost and Emission Reduction
3
作者 Elaine Yi-Ling Wu 《Computer Modeling in Engineering & Sciences》 2025年第4期1185-1214,共30页
Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex syst... Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems. 展开更多
关键词 Hybrid renewable energy system multi-neighborhood enhanced harris hawks optimization costemission optimization renewable energy allocation problem reliability
在线阅读 下载PDF
An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem
4
作者 Yuting Zhu Wenyu Zhang +3 位作者 Hainan Wang Junjie Hou Haining Wang Meng Wang 《Computers, Materials & Continua》 2025年第2期2177-2198,共22页
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge... Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems. 展开更多
关键词 Site selection triangular fuzzy theory chaotic quantum harris hawks optimization multi-objective optimization
在线阅读 下载PDF
An Improved Harris Hawks Optimization Algorithm with Multi-strategy for Community Detection in Social Network 被引量:8
5
作者 Farhad Soleimanian Gharehchopogh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1175-1197,共23页
The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing conne... The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing connections between things. Communities are node clusters with many internal links but minimal intergroup connections. Although community detection has attracted much attention in social media research, most face functional weaknesses because the structure of society is unclear or the characteristics of nodes in society are not the same. Also, many existing algorithms have complex and costly calculations. This paper proposes different Harris Hawk Optimization (HHO) algorithm methods (such as Improved HHO Opposition-Based Learning(OBL) (IHHOOBL), Improved HHO Lévy Flight (IHHOLF), and Improved HHO Chaotic Map (IHHOCM)) were designed to balance exploitation and exploration in this algorithm for community detection in the social network. The proposed methods are evaluated on 12 different datasets based on NMI and modularity criteria. The findings reveal that the IHHOOBL method has better detection accuracy than IHHOLF and IHHOCM. Also, to offer the efficiency of the , state-of-the-art algorithms have been used as comparisons. The improvement percentage of IHHOOBL compared to the state-of-the-art algorithm is about 7.18%. 展开更多
关键词 Bionic algorithm Complex network Community detection harris hawk optimization algorithm Opposition-based learning Levy flight Chaotic maps
在线阅读 下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:13
6
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 Flyrock harris hawks optimization(HHO) Multi-layer perceptron(MLP) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(WOA)
在线阅读 下载PDF
Modified Harris Hawks Optimization Based Test Case Prioritization for Software Testing 被引量:1
7
作者 Manar Ahmed Hamza Abdelzahir Abdelmaboud +5 位作者 Souad Larabi-Marie-Sainte Haya Mesfer Alshahrani Mesfer Al Duhayyim Hamza Awad Ibrahim Mohammed Rizwanullah Ishfaq Yaseen 《Computers, Materials & Continua》 SCIE EI 2022年第7期1951-1965,共15页
Generally,software testing is considered as a proficient technique to achieve improvement in quality and reliability of the software.But,the quality of test cases has a considerable influence on fault revealing capabi... Generally,software testing is considered as a proficient technique to achieve improvement in quality and reliability of the software.But,the quality of test cases has a considerable influence on fault revealing capability of software testing activity.Test Case Prioritization(TCP)remains a challenging issue since prioritizing test cases is unsatisfactory in terms of Average Percentage of Faults Detected(APFD)and time spent upon execution results.TCP ismainly intended to design a collection of test cases that can accomplish early optimization using preferred characteristics.The studies conducted earlier focused on prioritizing the available test cases in accelerating fault detection rate during software testing.In this aspect,the current study designs aModified Harris Hawks Optimization based TCP(MHHO-TCP)technique for software testing.The aim of the proposed MHHO-TCP technique is to maximize APFD and minimize the overall execution time.In addition,MHHO algorithm is designed to boost the exploration and exploitation abilities of conventional HHO algorithm.In order to validate the enhanced efficiency of MHHO-TCP technique,a wide range of simulations was conducted on different benchmark programs and the results were examined under several aspects.The experimental outcomes highlight the improved efficiency of MHHO-TCP technique over recent approaches under different measures. 展开更多
关键词 Software testing harris hawks optimization test case prioritization apfd execution time metaheuristics
在线阅读 下载PDF
Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization for Solving Continuous Numerical Optimization Problems
8
作者 Hao Cui Yanling Guo +4 位作者 Yaning Xiao Yangwei Wang Jian Li Yapeng Zhang Haoyu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1635-1675,共41页
Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the ba... Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the basic HHO algorithm still has certain limitations,including the tendency to fall into the local optima and poor convergence accuracy.Coot Bird Optimization(CBO)is another new swarm-based optimization algorithm.CBO originates from the regular and irregular motion of a bird called Coot on the water’s surface.Although the framework of CBO is slightly complicated,it has outstanding exploration potential and excellent capability to avoid falling into local optimal solutions.This paper proposes a novel enhanced hybrid algorithm based on the basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization(EHHOCBO).EHHOCBO can provide higher-quality solutions for numerical optimization problems.It first embeds the leadership mechanism of CBO into the population initialization process of HHO.This way can take full advantage of the valuable solution information to provide a good foundation for the global search of the hybrid algorithm.Secondly,the Ensemble Mutation Strategy(EMS)is introduced to generate the mutant candidate positions for consideration,further improving the hybrid algorithm’s exploration trend and population diversity.To further reduce the likelihood of falling into the local optima and speed up the convergence,Refracted Opposition-Based Learning(ROBL)is adopted to update the current optimal solution in the swarm.Using 23 classical benchmark functions and the IEEE CEC2017 test suite,the performance of the proposed EHHOCBO is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved variants.Experimental results show that EHHOCBO can achieve better solution accuracy,faster convergence speed,and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.Finally,EHHOCBOis applied to address four engineering design problems.Our findings indicate that the proposed method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution. 展开更多
关键词 harris hawks optimization coot bird optimization hybrid ensemblemutation strategy refracted opposition-based learning
在线阅读 下载PDF
Crisscross Harris Hawks Optimizer for Global Tasks and Feature Selection 被引量:1
9
作者 Xin Wang Xiaogang Dong +1 位作者 Yanan Zhang Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1153-1174,共22页
Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it under... Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it undergoes weak global search capability because of the levy distribution in its optimization process. In this paper, a variant of HHO is proposed using Crisscross Optimization Algorithm (CSO) to compensate for the shortcomings of original HHO. The novel developed optimizer called Crisscross Harris Hawks Optimizer (CCHHO), which can effectively achieve high-quality solutions with accelerated convergence on a variety of optimization tasks. In the proposed algorithm, the vertical crossover strategy of CSO is used for adjusting the exploitative ability adaptively to alleviate the local optimum;the horizontal crossover strategy of CSO is considered as an operator for boosting explorative trend;and the competitive operator is adopted to accelerate the convergence rate. The effectiveness of the proposed optimizer is evaluated using 4 kinds of benchmark functions, 3 constrained engineering optimization issues and feature selection problems on 13 datasets from the UCI repository. Comparing with nine conventional intelligence algorithms and 9 state-of-the-art algorithms, the statistical results reveal that the proposed CCHHO is significantly more effective than HHO, CSO, CCNMHHO and other competitors, and its advantage is not influenced by the increase of problems’ dimensions. Additionally, experimental results also illustrate that the proposed CCHHO outperforms some existing optimizers in working out engineering design optimization;for feature selection problems, it is superior to other feature selection methods including CCNMHHO in terms of fitness, error rate and length of selected features. 展开更多
关键词 harris hawks optimization Bioinspired algorithm Global optimization Engineering optimization Feature selection
在线阅读 下载PDF
Harris Hawks Optimizer with Graph Convolutional Network Based Weed Detection in Precision Agriculture 被引量:1
10
作者 Saud Yonbawi Sultan Alahmari +4 位作者 T.Satyanarayana Murthy Padmakar Maddala E.Laxmi Lydia Seifedine Kadry Jungeun Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1533-1547,共15页
Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield.Precision agriculture offers a novel solution utilizing a systematic technique for current... Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield.Precision agriculture offers a novel solution utilizing a systematic technique for current agricultural problems like balancing production and environmental concerns.Weed control has become one of the significant problems in the agricultural sector.In traditional weed control,the entire field is treated uniformly by spraying the soil,a single herbicide dose,weed,and crops in the same way.For more precise farming,robots could accomplish targeted weed treatment if they could specifically find the location of the dispensable plant and identify the weed type.This may lessen by large margin utilization of agrochemicals on agricultural fields and favour sustainable agriculture.This study presents a Harris Hawks Optimizer with Graph Convolutional Network based Weed Detection(HHOGCN-WD)technique for Precision Agriculture.The HHOGCN-WD technique mainly focuses on identifying and classifying weeds for precision agriculture.For image pre-processing,the HHOGCN-WD model utilizes a bilateral normal filter(BNF)for noise removal.In addition,coupled convolutional neural network(CCNet)model is utilized to derive a set of feature vectors.To detect and classify weed,the GCN model is utilized with the HHO algorithm as a hyperparameter optimizer to improve the detection performance.The experimental results of the HHOGCN-WD technique are investigated under the benchmark dataset.The results indicate the promising performance of the presented HHOGCN-WD model over other recent approaches,with increased accuracy of 99.13%. 展开更多
关键词 Weed detection precision agriculture graph convolutional network harris hawks optimizer hyperparameter tuning
在线阅读 下载PDF
Harris Hawks Algorithm Incorporating Tuna Swarm Algorithm and Differential Variance Strategy
11
作者 XU Xiaohan YANG Haima +4 位作者 ZHENG Heqing LI Jun LIU Jin ZHANG Dawei HUANG Hongxin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第6期461-473,共13页
Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)i... Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)is proposed.The escape energy factor of nonlinear periodic energy decline balances the ability of global exploration and regional development.The parabolic foraging approach of the tuna swarm algorithm is introduced to enhance the global exploration ability of the algorithm and accelerate the convergence speed.The difference variation strategy is used to mutate the individual position and calculate the fitness,and the fitness of the original individual position is compared.The greedy technique is used to select the one with better fitness of the objective function,which increases the diversity of the population and improves the possibility of the algorithm jumping out of the local extreme value.The test function tests the TDHHO algorithm,and compared with other optimization algorithms,the experimental results show that the convergence speed and optimization accuracy of the improved Harris Hawks are improved.Finally,the enhanced Harris Hawks algorithm is applied to engineering optimization and wireless sensor networks(WSN)coverage optimization problems,and the feasibility of the TDHHO algorithm in practical application is further verified. 展开更多
关键词 harris hawks optimization nonlinear periodic energy decreases differential mutation strategy wireless sensor networks(WSN)coverage optimization results
原文传递
Swarming Behavior of Harris Hawks Optimizer for Arabic Opinion Mining
12
作者 Diaa Salam Abd Elminaam Nabil Neggaz +1 位作者 Ibrahim Abdulatief Ahmed Ahmed El Sawy Abouelyazed 《Computers, Materials & Continua》 SCIE EI 2021年第12期4129-4149,共21页
At present,the immense development of social networks allows generating a significant amount of textual data,which has facilitated researchers to explore the field of opinion mining.In addition,the processing of textu... At present,the immense development of social networks allows generating a significant amount of textual data,which has facilitated researchers to explore the field of opinion mining.In addition,the processing of textual opinions based on the term frequency-inverse document frequency method gives rise to a dimensionality problem.This study aims to detect the nature of opinions in the Arabic language employing a swarm intelligence(SI)-based algorithm,Harris hawks algorithm,to select the most relevant terms.The experimental study has been tested on two datasets:Arabic Jordanian General Tweets and Opinion Corpus for Arabic.In terms of accuracy and number of features,the results are better than those of other SI based algorithms,such as grey wolf optimizer and grasshopper optimization algorithm,and other algorithms in the literature,such as differential evolution,genetic algorithm,particle swarm optimization,basic and enhanced whale optimizer algorithm,slap swarm algorithm,and ant–lion optimizer. 展开更多
关键词 Arabic opinion mining harris hawks optimizer feature selection AJGT and OCA datasets
在线阅读 下载PDF
An Improved Jump Spider Optimization for Network Traffic Identification Feature Selection 被引量:1
13
作者 Hui Xu Yalin Hu +1 位作者 Weidong Cao Longjie Han 《Computers, Materials & Continua》 SCIE EI 2023年第9期3239-3255,共17页
The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for to... The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features. 展开更多
关键词 Network traffic identification feature selection jumping spider optimization algorithm harris hawk optimization small hole imaging
在线阅读 下载PDF
Optimizing Microgrid Energy Management via DE-HHO Hybrid Metaheuristics
14
作者 Jingrui Liu Zhiwen Hou +1 位作者 Boyu Wang Tianxiang Yin 《Computers, Materials & Continua》 2025年第9期4729-4754,共26页
In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to im... In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to improve energy efficiency and reliability.This study proposes a novel hybrid optimization algorithm,DE-HHO,combining differential evolution(DE)and Harris Hawks optimization(HHO)to address microgrid scheduling issues.The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts.The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind,solar,micro-gas turbine,and battery models.Comprehensive simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5%reduction in total cost compared to PSO and a 5.4%reduction compared to HHO.Specifically,DE-HHO attains an optimal total cost of$20,221.37,outperforming PSO($21,184.45)and HHO($21,372.24).The maximum cost obtained by DE-HHO is$23,420.55,with a mean of$21,615.77,indicating stability and cost control capabilities.These results highlight the effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable microgrid operation. 展开更多
关键词 Microgrid optimization differential evolution harris hawks optimization multi-objective scheduling
在线阅读 下载PDF
Towards Addressing Challenges in Efficient Alzheimer’s Disease Detection in Limited Resource Environments
15
作者 Walaa N.Ismail Fathimathul Rajeena P.P. Mona A.S.Ali 《Computer Modeling in Engineering & Sciences》 2025年第6期3709-3741,共33页
Early detection of Alzheimer’s disease(AD)is crucial,particularly in resource-constrained medical settings.This study introduces an optimized deep learning framework that conceptualizes neural networks as computatio... Early detection of Alzheimer’s disease(AD)is crucial,particularly in resource-constrained medical settings.This study introduces an optimized deep learning framework that conceptualizes neural networks as computational“sensors”for neurodegenerative diagnosis,incorporating feature selection,selective layer unfreezing,pruning,and algorithmic optimization.An enhanced lightweight hybrid DenseNet201 model is proposed,integrating layer pruning strategies for feature selection and bioinspired optimization techniques,including Genetic Algorithm(GA)and Harris Hawks Optimization(HHO),for hyperparameter tuning.Layer pruning helps identify and eliminate less significant features,while model parameter optimization further enhances performance by fine-tuning critical hyperparameters,improving convergence speed,and maximizing classification accuracy.GA is also used to reduce the number of selected features further.A detailed comparison of six AD classification model setups is provided to illustrate the variations and their impact on performance.Applying the lightweight hybrid DenseNet201 model for MRI-based AD classification yielded an impressive baseline F1 score of 98%.Overall feature reduction reached 51.75%,enhancing interpretability and lowering processing costs.The optimized models further demonstrated perfect generalization,achieving 100%classification accuracy.These findings underscore the potential of advanced optimization techniques in developing efficient and accurate AD diagnostic tools suitable for environments with limited computational resources. 展开更多
关键词 Artificial intelligence Alzheimer’s disease harris hawks optimization genetic algorithm
暂未订购
Optimization of Resource Allocation in Unmanned Aerial Vehicles Based on Swarm Intelligence Algorithms
16
作者 Siling Feng Yinjie Chen +1 位作者 Mengxing Huang Feng Shu 《Computers, Materials & Continua》 SCIE EI 2023年第5期4341-4355,共15页
Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby ext... Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby extending the lifetime of this energy-constrained device.This paper investigates the optimization of resource allocation in light of the fact that power transfer and data transmission cannot be performed simultaneously.In this paper,we propose an optimization strategy for the resource allocation of UAVs in sensor communication networks.It is a practical solution to the problem of marine sensor networks that are located far from shore and have limited power.A corresponding system model is summarized based on the scenario and existing theoretical works.The minimum throughputmaximizing object is then formulated as an optimization problem.As swarm intelligence algorithms are utilized effectively in numerous fields,this paper chose to solve the formed optimization problem using the Harris Hawks Optimization and Whale Optimization Algorithms.This paper introduces a method for translating multi-decisions into a row vector in order to adapt swarm intelligence algorithms to the problem,as joint time and energy optimization have two sets of variables.The proposed method performs well in terms of stability and duration.Finally,performance is evaluated through numerical experiments.Simulation results demonstrate that the proposed method performs admirably in the given scenario. 展开更多
关键词 Resource allocation unmanned aerial vehicles harris hawks optimization whale optimization algorithm
在线阅读 下载PDF
HHO optimized support vector machine classifier for traditional Chinese medicine syndrome differentiation of diabetic retinopathy 被引量:1
17
作者 Li Xiao Cheng-Wu Wang +4 位作者 Ying Deng Yi-Jing Yang Jing Lu Jun-Feng Yan Qing-Hua Peng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期991-1000,共10页
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel... AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation. 展开更多
关键词 traditional Chinese medicine diabetic retinopathy harris hawk optimization Support Vector Machine syndrome differentiation
原文传递
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
18
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
Bilateral Contract for Load Frequency and Renewable Energy Sources Using Advanced Controller
19
作者 Krishan Arora Gyanendra Prasad Joshi +4 位作者 Mahmoud Ragab Muhyaddin Rawa Ahmad H.Milyani Romany F.Mansour Eunmok Yang 《Computers, Materials & Continua》 SCIE EI 2022年第11期3165-3180,共16页
Reestablishment in power system brings in significant transformation in the power sector by extinguishing the possession of sound consolidated assistance.However,the collaboration of various manufacturing agencies,aut... Reestablishment in power system brings in significant transformation in the power sector by extinguishing the possession of sound consolidated assistance.However,the collaboration of various manufacturing agencies,autonomous power manufacturers,and buyers have created complex installation processes.The regular active load and inefficiency of best measures among varied associates is a huge hazard.Any sudden load deviation will give rise to immediate amendment in frequency and tie-line power errors.It is essential to deal with every zone’s frequency and tie-line power within permitted confines followed by fluctuations within the load.Therefore,it can be proficient by implementing Load Frequency Control under the Bilateral case,stabilizing the power and frequency distinction within the interrelated power grid.Balancing the net deviation in multiple areas is possible by minimizing the unbalance of Bilateral Contracts with the help of proportional integral and advanced controllers like Harris Hawks Optimizer.We proposed the advanced controller Harris Hawk optimizer-based model and validated it on a test bench.The experiment results show that the delay time is 0.0029 s and the settling time of 20.86 s only.This model can also be leveraged to examine the decision boundaries of the Bilateral case. 展开更多
关键词 Bilateral contract load frequency control optimization harris hawks optimizer
在线阅读 下载PDF
Magnitude and uniformity improvement of the received optical power for an indoor VLC system jointly assisted by angle-diversity transceivers and STAR-IRS
20
作者 YANG Ting WANG Ping +3 位作者 HE Huimeng XIONG Yingfei SUN Yanzhe LIU Qi 《Optoelectronics Letters》 2025年第11期671-676,共6页
To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflectio... To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems. 展开更多
关键词 indoor VLC Two Stage Alternating Iteration Algorithm harris hawks Optimizer optimize magnitude uniformity star IRS demonstrate superiori improve quality illumination distributionone angle diversity transceivers
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部