Autophagy,a conserved cellular degradation process,is crucial for various cellular processes such as immune responses,inflammation,metabolic and oxidative stress adaptation,cell proliferation,development,and tissue re...Autophagy,a conserved cellular degradation process,is crucial for various cellular processes such as immune responses,inflammation,metabolic and oxidative stress adaptation,cell proliferation,development,and tissue repair and remodeling.Dysregulation of autophagy is suspected in numerous diseases,including cancer,neurodegenerative diseases,digestive disorders,metabolic syndromes,and infectious and inflammatory diseases.If autophagy is disrupted,for example,this can have serious consequences and lead to chronic inflammation and tissue damage,as occurs in diseases such as Chron's disease and ulcerative colitis.On the other hand,the influence of autophagy on the development and progression of cancer is not clear.Autophagy can both suppress and promote the progression and metastasis of cancer at various stages.From inflammatory bowel diseases to gastrointestinal cancer,researchers are discovering the intricate role of autophagy in maintaining gut health and its potential as a therapeutic target.Researchers should carefully consider the nature and progression of diseases such as cancer when trying to determine whether inhibiting or stimulating autophagy is likely to be beneficial.Multidisciplinary approaches that combine cutting-edge research with clinical expertise are key to unlocking the full therapeutic potential of autophagy in digestive diseases.展开更多
A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It ...A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2)polluted water circulating system (pumping-spraying-collecting); (3)heating system; (4)workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard or discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.展开更多
In science fiction movies like Westworld, robots are awaking; in Blade Runner, the consciousness of robots is rising; and in The Matrix, people are trapped in a virtual world by robots.
Morocco expands its wind energy program to provide much needed clean energy resource THINK of the Kingdom of Morocco and you would not imagine wind farms stretching into the horizon. But the North African country has ...Morocco expands its wind energy program to provide much needed clean energy resource THINK of the Kingdom of Morocco and you would not imagine wind farms stretching into the horizon. But the North African country has set itself a windfilled challenge,one that could be a model for sustainable development.Morocco aims to increase its electricity output from wind from its current 280 MW (megawatt) to 2,000 MW by 2020.展开更多
THE history of all developed economies and even the emerging ones have been their abilities to harness human resource into capital and use its diverse multiplier effects to create value chains spanning all other resou...THE history of all developed economies and even the emerging ones have been their abilities to harness human resource into capital and use its diverse multiplier effects to create value chains spanning all other resources categories. In addition, this process unleashes outcomes that include a rise in national economic aggregates and more importantly, improved quality of living standards for citizens.展开更多
Chinese solar power company provides clean,affordable andsustainable energy solutions in AfricaIN most areas in Africa,poor infrastructure and unreliable power supply means life-saving vaccines are often spoiled,as th...Chinese solar power company provides clean,affordable andsustainable energy solutions in AfricaIN most areas in Africa,poor infrastructure and unreliable power supply means life-saving vaccines are often spoiled,as they need to keep cool from the point of manufacture all the way to the point of use.展开更多
Renewable energy includes all forms of energy produced from renewable sources in a sustainable manner, including bioenergy, geothermal energy, hydropower, ocean energy, solar energy, and wind energy. Less than one qua...Renewable energy includes all forms of energy produced from renewable sources in a sustainable manner, including bioenergy, geothermal energy, hydropower, ocean energy, solar energy, and wind energy. Less than one quarter of Africa’s renewable power generation potential is utilized. Africa’s natural endowments are enormous, yet the continent experiences high energy shortage. Amongst the classifications of energy sources, renewable and green energy sources are increasingly gaining popularity due to their sustainable nature and environmental concerns. This paper explores the continent’s natural energy sources and identifies pathways to sustainable development. The paper also narrows the renewable and green energy sources obtainable on the continent and presents their contribution to the development of the continent. The awareness level of Africans towards renewable energy is discussed and the challenges of renewable and green energy sources are highlighted. Finally, the roles to be played by the government and private organizations in the development of renewable and green energy sources in Africa are discussed.展开更多
Exceptional point(EP)is referred to degeneracies in a non-Hermitian system where two or more eigenvalues and their corresponding eigenvectors coalesce.Recently there have been significantly increased interests in harn...Exceptional point(EP)is referred to degeneracies in a non-Hermitian system where two or more eigenvalues and their corresponding eigenvectors coalesce.Recently there have been significantly increased interests in harnessing EPs to enhance responsivities and achieve ultrasensitive detections in optics,electronics and acoustics,although there are few similar studies focused on using surface acoustic wave(SAW)sensing technologies,probably due to its great technical challenges.Herein,we proposed a scheme for accessing EPs in an on-chip architecture consisted of coupledSAW-resonators system,forming a passive parity-time(PT)symmetric system.We demonstrated that by tuning additional losses in one of resonators and regulating the system in the proximity of the EP,the sensor exhibited significantly enhanced responses.As an example,we present an EP-based SAW gas sensor,which showed a muchimproved sensitivity compared to that of a conventional delay-line SAW sensor.The fundamental mechanisms behind this excellent sensing performance have been elucidated.展开更多
The global increase in the prevalence of drug-resistant bacteria has necessitated the development of alternative treatments that do not rely on conventional antimicrobial agents.Using bacteriophage-derived lytic enzym...The global increase in the prevalence of drug-resistant bacteria has necessitated the development of alternative treatments that do not rely on conventional antimicrobial agents.Using bacteriophage-derived lytic enzymes in antibacterial therapy shows promise;however,a thorough comparison and evaluation of their bactericidal efficacy are lacking.This study aimed to compare and investigate the bactericidal activity and spectrum of such lytic enzymes,with the goal of harnessing them for antibacterial therapy.First,we examined the bactericidal activity of spanins,endolysins,and holins derived from 2 Escherichia coli model phages,T1 and T7.Among these,T1-spanin exhibited the highest bactericidal activity against E.coli.Subsequently,we expressed T1-spanin within bacterial cells and assessed its bactericidal activity.T1-spanin showed potent bactericidal activity against all clinical isolates tested,including bacterial strains of 111 E.coli,2 Acinetobacter spp.,3 Klebsiella spp.,and 3 Pseudomonas aeruginosa.In contrast,T1 phage-derived endolysin showed bactericidal activity against E.coli and P.aeruginosa,yet its efficacy against other bacteria was inferior to that of T1-spanin.Finally,we developed a phage-based technology to introduce the T1-spanin gene into target bacteria.The synthesized non-proliferative phage exhibited strong antibacterial activity against the targeted bacteria.The potent bactericidal activity exhibited by spanins,combined with the novel phage synthetic technology,holds promise for the development of innovative antimicrobial agents.展开更多
Mosquito-borne diseases,encompassing threats like dengue,Zika virus(ZIKV)infection,and malaria,pose a sig-nificant challenge to global public health security,evoking widespread concern.The gravity of the situation is ...Mosquito-borne diseases,encompassing threats like dengue,Zika virus(ZIKV)infection,and malaria,pose a sig-nificant challenge to global public health security,evoking widespread concern.The gravity of the situation is un-derscored by some staggering statistics:over 3.9 billion people in more than 120 countries confront the imminent threat of some of the most epidemiologically significant mosquito-borne viruses;in 2021 alone,malaria accounted for 247 million cases,resulting in an estimated 619,000 deaths globally.展开更多
The United Nations passed two important resolutions,Transforming our World:The 2030 Agenda for Sustainable Development and the Paris Agreement,in 2015 to change our world.The 17 Sustainable Development Goals(SDGs)were...The United Nations passed two important resolutions,Transforming our World:The 2030 Agenda for Sustainable Development and the Paris Agreement,in 2015 to change our world.The 17 Sustainable Development Goals(SDGs)were adopted as the core of the 2030 Agenda for Sustainable Development,which set out a 15-year plan to achieve the goals.展开更多
Plant microbiome(including the microbiomes in the rhizosphere,phyllosphere,and endosphere)has been hailed as the second genome of the host,and plays a critical role in the health and fitness of the host.Similar to cli...Plant microbiome(including the microbiomes in the rhizosphere,phyllosphere,and endosphere)has been hailed as the second genome of the host,and plays a critical role in the health and fitness of the host.Similar to clinical medicine,microbiome transplant has been suggested to improve ecosystem restoration and crop production in degraded environment(Jurburg et al.,2022).This concept aligns with recent findings that emphasize the significant impact of soil and plant-associated microbiomes in agricultural productivity and the health of host plants(Wubs et al.,2016;Carthey et al.,2020;Mazza Rodrigues and Melotto,2023).展开更多
The increase in wood and wood-based products in the construction and furniture sectors has grown exponentially,generating severe environmental and socioeconomic impacts.Particleboard panels have been the main cost-ben...The increase in wood and wood-based products in the construction and furniture sectors has grown exponentially,generating severe environmental and socioeconomic impacts.Particleboard panels have been the main cost-benefit option on the market due to their lightness and lower cost compared to solid wood.However,the synthetic adhesives used in producing traditional particleboard panels cause serious harm to human health.Developing particleboard panels with fibrous waste and natural adhesives could be a sustainable alternative for these sectors.The work aimed to create particleboards with fibrous wastes from the pseudostem of the banana tree(Musa paradisiaca)and different proportions of the natural adhesive cassava starch-CS in replacement of synthetic adhesive urea-formaldehyde-UF.Five experimental groups were manufactured with banana trees and different percentages of UF and CS adhesives,namely(100UF–0%CS),(50%UF–50%CS),(30%UF–70%CS),(10%UF–90%CS)and(0%UF–100%CS).The particleboards had their physical-mechanical properties determined.The apparent density values did not show significant variation between the assessed treatments.Regarding the water absorption and thickness swelling,the best performances were observed for the panels made without the addition of CS(100%UF).For the mechanical properties of static bending strength and Janka hardness,it was identified that adding up to 50%CS did not interfere with the quality of the panels.These analyses show that the particleboard panels produced with wastes of the banana tree bonded with natural CS adhesivemay be an economically viable and environmentally correct alternative,positively strengthening the development of sustainable strategies.展开更多
Male sterile lines serve as a pivotal tool in plant breeding,offering an effective strategy for developing hybrid cultivars.In cucumber(Cucumis sativus L.),the creation of male sterile lines,most of which exhibit abno...Male sterile lines serve as a pivotal tool in plant breeding,offering an effective strategy for developing hybrid cultivars.In cucumber(Cucumis sativus L.),the creation of male sterile lines,most of which exhibit abnormal pollen development,is essential for harnessing heterosis.Accumulating evidence suggests that male sterility in plants is linked to the overaccumulation of Reactive Oxygen Species(ROS),which causes oxidative damage to biomolecules and cellular structures,ultimately leading to aberrant anther development(Li et al.,2004).展开更多
The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the v...The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the voltage and maintains the frequency within the limits while working with both linear and nonlinear loads for varying wind speeds.The admittance algorithm is simple and easy to implement and works very efficiently to generate the triggering signals for the controller of the WPHU.The wind power harnessing unit comprising of a squirrel cage induction generator,a star-delta transformer,a battery storage system and the control unit are modeled using Matlab/Simulink R2019.An isolated transformer with a star-delta configuration connects the load and the generator circuit with the controller to reduce the dc bus voltage and mitigate current in the neutral line.The response of the system during the dynamic loading depends on the best possible compensator proportional-integral(PI)gains.The antlion optimization algorithm is compared with particle swarm optimization and grey wolf optimization and is found to have the advantages of good convergence,high efficiency and fast calculating speed.It is therefore used to extract the optimal values of frequency and voltage PI gains.The simulation results of the control algorithm for the WPHU are validated in a real-time environment in a dSpace1104 laboratory set up.This algorithm is proven to have a quick response,maintain the required frequency,suppress the current harmonics,regulate voltage,help in balancing the load and compensating for the neutral current.展开更多
The ISO Annual Meeting is the world’s premier event for the international standards community.This year’s event is hosted by RSB,the national standards body of Rwanda.The theme“United for impact”calls us to harnes...The ISO Annual Meeting is the world’s premier event for the international standards community.This year’s event is hosted by RSB,the national standards body of Rwanda.The theme“United for impact”calls us to harness our collective strength in a world that needs bold,lasting change.The ISO Annual Meeting convenes global leaders and change-makers to explore how international standards can unlock progress,foster trust and drive lasting solutions to our shared challenges.展开更多
The Bayan Har block,one of China's most seismically active regions,has experienced multiple major earthquakes(≥M 7.0)in recent years.It is a key area for investigating the interactions between the Qinghai-Xizang(...The Bayan Har block,one of China's most seismically active regions,has experienced multiple major earthquakes(≥M 7.0)in recent years.It is a key area for investigating the interactions between the Qinghai-Xizang(Qingzang)Plateau and adjacent blocks,plateau uplift,and strong earthquake mechanisms.P-wave velocity and crustal composition provide key constraints on the properties of distinct tectonic units and their evolutionary modification processes.Based on the results of 8 Deep Seismic Sounding(DSS)profiles completed in the Bayan Har block and surrounding areas over the past 20 years,We constructed one-dimensional P-wave velocity models for the crust of Bayan Har block,Qilian fold belt,Qinling fold belt,Alxa block,Ordos block and Sichuan basin.Furthermore,crustal composition models for different tectonic units were established based on these results.The results reveal that the crustal thickness of the Bayan Har block gradually decreases towards the NNE,NE,and SE directions,while the average crustal velocity increases correspondingly.The felsic layer in the crust accounts for more than half of the total crustal thickness.The mafic content within the crust of different tectonic units exhibits notable variations,which may reflect that the Bayan Har block,Qilian fold belt,and Qinling fold belt have experienced more intensive lithospheric evolution processes compared to Ordos basin and Sichuan basin.The seismicity distribution in this region is significantly controlled by crustal velocity and composition heterogeneity across the Bayan Har block and adjacent areas,which demonstrates that earthquakes within and around the Bayan Har block exhibit both high frequency and larger magnitudes.These seismic characteristics primarily result from intense crustal stress accumulation and release during the outward expansion of the Qingzang Plateau.展开更多
Human Activity Recognition(HAR)represents a rapidly advancing research domain,propelled by continuous developments in sensor technologies and the Internet of Things(IoT).Deep learning has become the dominant paradigm ...Human Activity Recognition(HAR)represents a rapidly advancing research domain,propelled by continuous developments in sensor technologies and the Internet of Things(IoT).Deep learning has become the dominant paradigm in sensor-based HAR systems,offering significant advantages over traditional machine learning methods by eliminating manual feature extraction,enhancing recognition accuracy for complex activities,and enabling the exploitation of unlabeled data through generative models.This paper provides a comprehensive review of recent advancements and emerging trends in deep learning models developed for sensor-based human activity recognition(HAR)systems.We begin with an overview of fundamental HAR concepts in sensor-driven contexts,followed by a systematic categorization and summary of existing research.Our survey encompasses a wide range of deep learning approaches,including Multi-Layer Perceptrons(MLP),Convolutional Neural Networks(CNN),Recurrent Neural Networks(RNN),Long Short-Term Memory networks(LSTM),Gated Recurrent Units(GRU),Transformers,Deep Belief Networks(DBN),and hybrid architectures.A comparative evaluation of these models is provided,highlighting their performance,architectural complexity,and contributions to the field.Beyond Centralized deep learning models,we examine the role of Federated Learning(FL)in HAR,highlighting current applications and research directions.Finally,we discuss the growing importance of Explainable Artificial Intelligence(XAI)in sensor-based HAR,reviewing recent studies that integrate interpretability methods to enhance transparency and trustworthiness in deep learning-based HAR systems.展开更多
文摘Autophagy,a conserved cellular degradation process,is crucial for various cellular processes such as immune responses,inflammation,metabolic and oxidative stress adaptation,cell proliferation,development,and tissue repair and remodeling.Dysregulation of autophagy is suspected in numerous diseases,including cancer,neurodegenerative diseases,digestive disorders,metabolic syndromes,and infectious and inflammatory diseases.If autophagy is disrupted,for example,this can have serious consequences and lead to chronic inflammation and tissue damage,as occurs in diseases such as Chron's disease and ulcerative colitis.On the other hand,the influence of autophagy on the development and progression of cancer is not clear.Autophagy can both suppress and promote the progression and metastasis of cancer at various stages.From inflammatory bowel diseases to gastrointestinal cancer,researchers are discovering the intricate role of autophagy in maintaining gut health and its potential as a therapeutic target.Researchers should carefully consider the nature and progression of diseases such as cancer when trying to determine whether inhibiting or stimulating autophagy is likely to be beneficial.Multidisciplinary approaches that combine cutting-edge research with clinical expertise are key to unlocking the full therapeutic potential of autophagy in digestive diseases.
基金ThisprojecthadobtainedChinaPatent (No .ZL98 2 2 6 785 .1)
文摘A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2)polluted water circulating system (pumping-spraying-collecting); (3)heating system; (4)workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard or discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.
文摘In science fiction movies like Westworld, robots are awaking; in Blade Runner, the consciousness of robots is rising; and in The Matrix, people are trapped in a virtual world by robots.
文摘Morocco expands its wind energy program to provide much needed clean energy resource THINK of the Kingdom of Morocco and you would not imagine wind farms stretching into the horizon. But the North African country has set itself a windfilled challenge,one that could be a model for sustainable development.Morocco aims to increase its electricity output from wind from its current 280 MW (megawatt) to 2,000 MW by 2020.
文摘THE history of all developed economies and even the emerging ones have been their abilities to harness human resource into capital and use its diverse multiplier effects to create value chains spanning all other resources categories. In addition, this process unleashes outcomes that include a rise in national economic aggregates and more importantly, improved quality of living standards for citizens.
文摘Chinese solar power company provides clean,affordable andsustainable energy solutions in AfricaIN most areas in Africa,poor infrastructure and unreliable power supply means life-saving vaccines are often spoiled,as they need to keep cool from the point of manufacture all the way to the point of use.
文摘Renewable energy includes all forms of energy produced from renewable sources in a sustainable manner, including bioenergy, geothermal energy, hydropower, ocean energy, solar energy, and wind energy. Less than one quarter of Africa’s renewable power generation potential is utilized. Africa’s natural endowments are enormous, yet the continent experiences high energy shortage. Amongst the classifications of energy sources, renewable and green energy sources are increasingly gaining popularity due to their sustainable nature and environmental concerns. This paper explores the continent’s natural energy sources and identifies pathways to sustainable development. The paper also narrows the renewable and green energy sources obtainable on the continent and presents their contribution to the development of the continent. The awareness level of Africans towards renewable energy is discussed and the challenges of renewable and green energy sources are highlighted. Finally, the roles to be played by the government and private organizations in the development of renewable and green energy sources in Africa are discussed.
基金supported by National Key R&D Program of China under Grant 2022YFE0103300 and 2020YFA0211400.
文摘Exceptional point(EP)is referred to degeneracies in a non-Hermitian system where two or more eigenvalues and their corresponding eigenvectors coalesce.Recently there have been significantly increased interests in harnessing EPs to enhance responsivities and achieve ultrasensitive detections in optics,electronics and acoustics,although there are few similar studies focused on using surface acoustic wave(SAW)sensing technologies,probably due to its great technical challenges.Herein,we proposed a scheme for accessing EPs in an on-chip architecture consisted of coupledSAW-resonators system,forming a passive parity-time(PT)symmetric system.We demonstrated that by tuning additional losses in one of resonators and regulating the system in the proximity of the EP,the sensor exhibited significantly enhanced responses.As an example,we present an EP-based SAW gas sensor,which showed a muchimproved sensitivity compared to that of a conventional delay-line SAW sensor.The fundamental mechanisms behind this excellent sensing performance have been elucidated.
基金supported by the Japan Agency for Medical Research and Development under grant numbers JP23wm0325065,JP22fk0108532,JP21fk0108496,and JP21 wm0325022 to K.K.grant number JP21gm1610002 to L.C.and K.K.JSPS KAKENHI grants numbers 21H02110 and 21K19666 to K.K.
文摘The global increase in the prevalence of drug-resistant bacteria has necessitated the development of alternative treatments that do not rely on conventional antimicrobial agents.Using bacteriophage-derived lytic enzymes in antibacterial therapy shows promise;however,a thorough comparison and evaluation of their bactericidal efficacy are lacking.This study aimed to compare and investigate the bactericidal activity and spectrum of such lytic enzymes,with the goal of harnessing them for antibacterial therapy.First,we examined the bactericidal activity of spanins,endolysins,and holins derived from 2 Escherichia coli model phages,T1 and T7.Among these,T1-spanin exhibited the highest bactericidal activity against E.coli.Subsequently,we expressed T1-spanin within bacterial cells and assessed its bactericidal activity.T1-spanin showed potent bactericidal activity against all clinical isolates tested,including bacterial strains of 111 E.coli,2 Acinetobacter spp.,3 Klebsiella spp.,and 3 Pseudomonas aeruginosa.In contrast,T1 phage-derived endolysin showed bactericidal activity against E.coli and P.aeruginosa,yet its efficacy against other bacteria was inferior to that of T1-spanin.Finally,we developed a phage-based technology to introduce the T1-spanin gene into target bacteria.The synthesized non-proliferative phage exhibited strong antibacterial activity against the targeted bacteria.The potent bactericidal activity exhibited by spanins,combined with the novel phage synthetic technology,holds promise for the development of innovative antimicrobial agents.
基金supported by grants from the National Key Research and Development Plan of China(2021YFC2300200,2021YFC2302405,2022YFC2303200,and 2022YFC2303400)the National Natural Science Foundation of China(32188101 and 82102389)+4 种基金Tsinghua University Initiative Scientific Research Program(20233080060)Shenzhen San-Ming Project for Prevention and Research on Vector-borne Diseases(SZSM202211023)Yunnan Provincial Science and Technology Project at Southwest United Graduate School(202302A0370010)the New Cornerstone Science Foundation through the New Cornerstone Investigator Programthe Xplorer Prize from Tencent Foundation.
文摘Mosquito-borne diseases,encompassing threats like dengue,Zika virus(ZIKV)infection,and malaria,pose a sig-nificant challenge to global public health security,evoking widespread concern.The gravity of the situation is un-derscored by some staggering statistics:over 3.9 billion people in more than 120 countries confront the imminent threat of some of the most epidemiologically significant mosquito-borne viruses;in 2021 alone,malaria accounted for 247 million cases,resulting in an estimated 619,000 deaths globally.
基金supported by the International ResearchCenter of Big Data for Sustainable Development Goals(CBAS)(CBASYX0906)the Strategic Priority Research Program of the Chinese Academy of Sciences(grant number XDA19090122)+1 种基金key scientific and technological research projects in the Xinjiang Production and Construction Corps(grant number 2023AB074)the Youth Innovation Promotion Association CAS under grant Y2022050.R.B.S.thankfully acknowledges a grant fromthe Swedish ResearchCouncil(Formas)(grant number 2022-02033).
文摘The United Nations passed two important resolutions,Transforming our World:The 2030 Agenda for Sustainable Development and the Paris Agreement,in 2015 to change our world.The 17 Sustainable Development Goals(SDGs)were adopted as the core of the 2030 Agenda for Sustainable Development,which set out a 15-year plan to achieve the goals.
文摘Plant microbiome(including the microbiomes in the rhizosphere,phyllosphere,and endosphere)has been hailed as the second genome of the host,and plays a critical role in the health and fitness of the host.Similar to clinical medicine,microbiome transplant has been suggested to improve ecosystem restoration and crop production in degraded environment(Jurburg et al.,2022).This concept aligns with recent findings that emphasize the significant impact of soil and plant-associated microbiomes in agricultural productivity and the health of host plants(Wubs et al.,2016;Carthey et al.,2020;Mazza Rodrigues and Melotto,2023).
基金financed by“Conselho Nacional de Desenvolvimento Cientifico e Tecnologico”(CNPq)and“Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior”(CAPES)-Finance Code 001.
文摘The increase in wood and wood-based products in the construction and furniture sectors has grown exponentially,generating severe environmental and socioeconomic impacts.Particleboard panels have been the main cost-benefit option on the market due to their lightness and lower cost compared to solid wood.However,the synthetic adhesives used in producing traditional particleboard panels cause serious harm to human health.Developing particleboard panels with fibrous waste and natural adhesives could be a sustainable alternative for these sectors.The work aimed to create particleboards with fibrous wastes from the pseudostem of the banana tree(Musa paradisiaca)and different proportions of the natural adhesive cassava starch-CS in replacement of synthetic adhesive urea-formaldehyde-UF.Five experimental groups were manufactured with banana trees and different percentages of UF and CS adhesives,namely(100UF–0%CS),(50%UF–50%CS),(30%UF–70%CS),(10%UF–90%CS)and(0%UF–100%CS).The particleboards had their physical-mechanical properties determined.The apparent density values did not show significant variation between the assessed treatments.Regarding the water absorption and thickness swelling,the best performances were observed for the panels made without the addition of CS(100%UF).For the mechanical properties of static bending strength and Janka hardness,it was identified that adding up to 50%CS did not interfere with the quality of the panels.These analyses show that the particleboard panels produced with wastes of the banana tree bonded with natural CS adhesivemay be an economically viable and environmentally correct alternative,positively strengthening the development of sustainable strategies.
基金supported by the Project of National Key Research and Development Program‘Strategic Science and Technology Innovation Cooperation’Key Special Project(Grant No.2023YFE0206900)the 2115 Talent Development Program of China Agricultural University,the 111 project(B17043)the Project of Yazhouwan Scientific,Technological Administration of Sanya.
文摘Male sterile lines serve as a pivotal tool in plant breeding,offering an effective strategy for developing hybrid cultivars.In cucumber(Cucumis sativus L.),the creation of male sterile lines,most of which exhibit abnormal pollen development,is essential for harnessing heterosis.Accumulating evidence suggests that male sterility in plants is linked to the overaccumulation of Reactive Oxygen Species(ROS),which causes oxidative damage to biomolecules and cellular structures,ultimately leading to aberrant anther development(Li et al.,2004).
文摘The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the voltage and maintains the frequency within the limits while working with both linear and nonlinear loads for varying wind speeds.The admittance algorithm is simple and easy to implement and works very efficiently to generate the triggering signals for the controller of the WPHU.The wind power harnessing unit comprising of a squirrel cage induction generator,a star-delta transformer,a battery storage system and the control unit are modeled using Matlab/Simulink R2019.An isolated transformer with a star-delta configuration connects the load and the generator circuit with the controller to reduce the dc bus voltage and mitigate current in the neutral line.The response of the system during the dynamic loading depends on the best possible compensator proportional-integral(PI)gains.The antlion optimization algorithm is compared with particle swarm optimization and grey wolf optimization and is found to have the advantages of good convergence,high efficiency and fast calculating speed.It is therefore used to extract the optimal values of frequency and voltage PI gains.The simulation results of the control algorithm for the WPHU are validated in a real-time environment in a dSpace1104 laboratory set up.This algorithm is proven to have a quick response,maintain the required frequency,suppress the current harmonics,regulate voltage,help in balancing the load and compensating for the neutral current.
文摘The ISO Annual Meeting is the world’s premier event for the international standards community.This year’s event is hosted by RSB,the national standards body of Rwanda.The theme“United for impact”calls us to harness our collective strength in a world that needs bold,lasting change.The ISO Annual Meeting convenes global leaders and change-makers to explore how international standards can unlock progress,foster trust and drive lasting solutions to our shared challenges.
基金supported by the National Key R&D Program of China(No.2023YFC3012002)the National Natural Science Foundation of China(42374073)。
文摘The Bayan Har block,one of China's most seismically active regions,has experienced multiple major earthquakes(≥M 7.0)in recent years.It is a key area for investigating the interactions between the Qinghai-Xizang(Qingzang)Plateau and adjacent blocks,plateau uplift,and strong earthquake mechanisms.P-wave velocity and crustal composition provide key constraints on the properties of distinct tectonic units and their evolutionary modification processes.Based on the results of 8 Deep Seismic Sounding(DSS)profiles completed in the Bayan Har block and surrounding areas over the past 20 years,We constructed one-dimensional P-wave velocity models for the crust of Bayan Har block,Qilian fold belt,Qinling fold belt,Alxa block,Ordos block and Sichuan basin.Furthermore,crustal composition models for different tectonic units were established based on these results.The results reveal that the crustal thickness of the Bayan Har block gradually decreases towards the NNE,NE,and SE directions,while the average crustal velocity increases correspondingly.The felsic layer in the crust accounts for more than half of the total crustal thickness.The mafic content within the crust of different tectonic units exhibits notable variations,which may reflect that the Bayan Har block,Qilian fold belt,and Qinling fold belt have experienced more intensive lithospheric evolution processes compared to Ordos basin and Sichuan basin.The seismicity distribution in this region is significantly controlled by crustal velocity and composition heterogeneity across the Bayan Har block and adjacent areas,which demonstrates that earthquakes within and around the Bayan Har block exhibit both high frequency and larger magnitudes.These seismic characteristics primarily result from intense crustal stress accumulation and release during the outward expansion of the Qingzang Plateau.
文摘Human Activity Recognition(HAR)represents a rapidly advancing research domain,propelled by continuous developments in sensor technologies and the Internet of Things(IoT).Deep learning has become the dominant paradigm in sensor-based HAR systems,offering significant advantages over traditional machine learning methods by eliminating manual feature extraction,enhancing recognition accuracy for complex activities,and enabling the exploitation of unlabeled data through generative models.This paper provides a comprehensive review of recent advancements and emerging trends in deep learning models developed for sensor-based human activity recognition(HAR)systems.We begin with an overview of fundamental HAR concepts in sensor-driven contexts,followed by a systematic categorization and summary of existing research.Our survey encompasses a wide range of deep learning approaches,including Multi-Layer Perceptrons(MLP),Convolutional Neural Networks(CNN),Recurrent Neural Networks(RNN),Long Short-Term Memory networks(LSTM),Gated Recurrent Units(GRU),Transformers,Deep Belief Networks(DBN),and hybrid architectures.A comparative evaluation of these models is provided,highlighting their performance,architectural complexity,and contributions to the field.Beyond Centralized deep learning models,we examine the role of Federated Learning(FL)in HAR,highlighting current applications and research directions.Finally,we discuss the growing importance of Explainable Artificial Intelligence(XAI)in sensor-based HAR,reviewing recent studies that integrate interpretability methods to enhance transparency and trustworthiness in deep learning-based HAR systems.