In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequen...In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.展开更多
Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Le...Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Lebesgue space which has vanishing moments up to order s plays an important role,where s∈N.展开更多
Let 0<p≤1<q<∞,andω1,ω2 E A1(Muckenhoupt-class).We study an oscillating multiplier operator Tγ,βand obtain that it is boundedon the homogeneous weighted Herz-type Hardy spaces HK_(q)^(α,p)(R^(n);ω1,ω2...Let 0<p≤1<q<∞,andω1,ω2 E A1(Muckenhoupt-class).We study an oscillating multiplier operator Tγ,βand obtain that it is boundedon the homogeneous weighted Herz-type Hardy spaces HK_(q)^(α,p)(R^(n);ω1,ω2)whenγ=nβ/2,α=n(1-1/q).Also,for the unweighted case,we obtain the Hk_(q)^(α,p)(R^(n))boundedness of Tγ,βunder certain conditions on y.These results are substantial improvements and extensions of the main results in the papers by Li and Lu and by Cao and Sun.As an application,we prove the HK_(q)^(α,p)(R^(n))boundedness of the spherical average S_(t)^(δ)uniformly on t>0.展开更多
Multi-parameter mixed Hardy space Hpmix is introduced by a new discrete Calderon's identity.As an application,we obtain the Hmix^p→ L^p(R^n1+n2)boundedness of operators in the mixed Journe’s class.
Let φ be a holomorphic self-map of Bn and ψ ∈ H(Hn). A composition type operator is defined by Tψ,φ(f) = ψf o φ for f ∈ H(Bn), which is a generalization of the multiplication operator and the composition...Let φ be a holomorphic self-map of Bn and ψ ∈ H(Hn). A composition type operator is defined by Tψ,φ(f) = ψf o φ for f ∈ H(Bn), which is a generalization of the multiplication operator and the composition operator. In this article, the necessary and sufficient conditions are given for the composition type operator Tψ,φ to be bounded or compact from Hardy space HP(Bn) to μ-Bloch space Bμ(Bn). The conditions are some supremums concerned with ψ,φ, their derivatives and Bergman metric of Bn. At the same time, two corollaries are obtained.展开更多
In this paper, the author gives a characterization of atomic Hardy spaces associated to Schrodinger operators by using area functions, and hence gets the dual spaces of atomic Hardy spaces.
A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
Applying the decomposition theorems in [1] and [2] , we obtain the boundedness theorem of Calderbn-Zygmund operator of type 6 on the Hardy spaces of weighted Herz type and establish interpolation theorem of linear ope...Applying the decomposition theorems in [1] and [2] , we obtain the boundedness theorem of Calderbn-Zygmund operator of type 6 on the Hardy spaces of weighted Herz type and establish interpolation theorem of linear operators on the weighted Herz spaces. -展开更多
It is proved that the maximal operator of the Marczinkiewicz-Fejér meams of a double Walsh-Fourier series is bounded from the two-dimensional dyadic martingale Hardy space H p to L p (2/3<p<∞) and is of we...It is proved that the maximal operator of the Marczinkiewicz-Fejér meams of a double Walsh-Fourier series is bounded from the two-dimensional dyadic martingale Hardy space H p to L p (2/3<p<∞) and is of weak type (1,1). As a consequence we obtain that the Marczinkiewicz-Fejér means of a function f∈L 1 converge a.e. to the function in question. Moreover, we prove that these means are uniformly bounded on H p whenever 2/3<p<∞. Thus, in case f∈H p , the Marczinkiewicz-Fejér means conv f in H p norm. The same results are proved for the conjugate means, too.展开更多
Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces,...Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces, establish the boundedness on these spaces of the pseudo-differential operators of order zero and show that , the class of C(Rn)-functions with compactly support, is dense in and there is a subsequence, which converges in distrbutional sense to some distribution of , of any bounded sequence in In addition, the author also set up the boundedness of some non-linear quantities in compensated compactness.展开更多
Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL ge...Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1.展开更多
Analytic Hardy and BMO spaces on the quantum torus are introduced. Some basic properties of these spaces are presented. In particular, the associated H 1-BMO duality theorem is proved. Finally, we discuss some possibl...Analytic Hardy and BMO spaces on the quantum torus are introduced. Some basic properties of these spaces are presented. In particular, the associated H 1-BMO duality theorem is proved. Finally, we discuss some possible extensions of the obtained results.展开更多
Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
Letμbe a positive Borel measure on the interval[0,1).The Hankel matrixHμ=(μn,k)n,k≥0 with entries μn,k=μn+k,whereμn=∫[0,1)tndμ(t),induces formally the operator asDHμ(f)(z)=∞∑n=0(∞∑k=0 μn,kak)z^(n),z∈D,...Letμbe a positive Borel measure on the interval[0,1).The Hankel matrixHμ=(μn,k)n,k≥0 with entries μn,k=μn+k,whereμn=∫[0,1)tndμ(t),induces formally the operator asDHμ(f)(z)=∞∑n=0(∞∑k=0 μn,kak)z^(n),z∈D,where f(z)=∞∑n=0a_(n)z^(n) is an analytic function in D.We characterize the positive Borel measures on[0,1)such thatDHμ(f)(z)=f[0,1)f(t)/(1-tz)^(2)dμ(t) for all f in the Hardy spaces Hp(0<p<∞),and among these we describe those for which is a bounded(resp.,compact)operator from Hp(0<p<∞)into Hq(q>p and q≥1).We also study the analogous problem in the Hardy spaces H^(p)(1≤p≤2).展开更多
This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of th...This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).展开更多
We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of C^(n).Toeplitz operators are closely related to many classical mappings,such as composition operators,the Volterra type inte...We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of C^(n).Toeplitz operators are closely related to many classical mappings,such as composition operators,the Volterra type integration operators and Carleson embeddings.We characterize the boundedness and compactness of Toeplitz operators from Hardy spaces H^(p) to weighted Bergman spaces A_(α)^(q) for the different values of p and q in the unit ball.展开更多
We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition a...We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition and molecular decomposition we get the boundedness of singular integral operators on variable Hardy spaces. We investigate the Littlewood-Paley characterization by virtue of the boundedness of singular integral operators.展开更多
In this paper, we discuss the boundedness of Marcinkiewicz integral μΩ with homogeneous kernel on the weighted Herz-type Hardy spaces, and prove that μΩ is bounded from HKq^a、P(ω1;ω2) into Kq^a、p (ω1; ω2).
基金Supported by the National Natural Science Foundation of China(12301101)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110019 and 2020A1515110585)。
文摘In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.
文摘Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Lebesgue space which has vanishing moments up to order s plays an important role,where s∈N.
基金supported by the National Key Research and Development Program of China(22YFA10057001)the National Science Foundation of Guangdong Province(2023A1515012034)the National Natural Science Foundation of China(12371105,11971295).
文摘Let 0<p≤1<q<∞,andω1,ω2 E A1(Muckenhoupt-class).We study an oscillating multiplier operator Tγ,βand obtain that it is boundedon the homogeneous weighted Herz-type Hardy spaces HK_(q)^(α,p)(R^(n);ω1,ω2)whenγ=nβ/2,α=n(1-1/q).Also,for the unweighted case,we obtain the Hk_(q)^(α,p)(R^(n))boundedness of Tγ,βunder certain conditions on y.These results are substantial improvements and extensions of the main results in the papers by Li and Lu and by Cao and Sun.As an application,we prove the HK_(q)^(α,p)(R^(n))boundedness of the spherical average S_(t)^(δ)uniformly on t>0.
基金NNSFC(11771223,11501308)Natural science foundation of Inner Mongolia(2019MS01003).
文摘Multi-parameter mixed Hardy space Hpmix is introduced by a new discrete Calderon's identity.As an application,we obtain the Hmix^p→ L^p(R^n1+n2)boundedness of operators in the mixed Journe’s class.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
基金Supported by NSF of China (10571164)SRFDP of Higher Education (20050358052)
文摘Let φ be a holomorphic self-map of Bn and ψ ∈ H(Hn). A composition type operator is defined by Tψ,φ(f) = ψf o φ for f ∈ H(Bn), which is a generalization of the multiplication operator and the composition operator. In this article, the necessary and sufficient conditions are given for the composition type operator Tψ,φ to be bounded or compact from Hardy space HP(Bn) to μ-Bloch space Bμ(Bn). The conditions are some supremums concerned with ψ,φ, their derivatives and Bergman metric of Bn. At the same time, two corollaries are obtained.
文摘In this paper, the author gives a characterization of atomic Hardy spaces associated to Schrodinger operators by using area functions, and hence gets the dual spaces of atomic Hardy spaces.
文摘A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
基金Supported by NSF of China and the Fund of Doctoral Program of N.E.C.
文摘Applying the decomposition theorems in [1] and [2] , we obtain the boundedness theorem of Calderbn-Zygmund operator of type 6 on the Hardy spaces of weighted Herz type and establish interpolation theorem of linear operators on the weighted Herz spaces. -
基金This paperwas written while theauthorwasresearching at Humboldt University in Berlin supported by Alexandervon Humboldt Foundation.This research was also supported by the Hungarian Scientific Research Funds (OTKA) NoF0 1 963 3 and by the Foundation
文摘It is proved that the maximal operator of the Marczinkiewicz-Fejér meams of a double Walsh-Fourier series is bounded from the two-dimensional dyadic martingale Hardy space H p to L p (2/3<p<∞) and is of weak type (1,1). As a consequence we obtain that the Marczinkiewicz-Fejér means of a function f∈L 1 converge a.e. to the function in question. Moreover, we prove that these means are uniformly bounded on H p whenever 2/3<p<∞. Thus, in case f∈H p , the Marczinkiewicz-Fejér means conv f in H p norm. The same results are proved for the conjugate means, too.
基金Supported by the NECF and the NECF and the NNSF of China
文摘Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces, establish the boundedness on these spaces of the pseudo-differential operators of order zero and show that , the class of C(Rn)-functions with compactly support, is dense in and there is a subsequence, which converges in distrbutional sense to some distribution of , of any bounded sequence in In addition, the author also set up the boundedness of some non-linear quantities in compensated compactness.
文摘Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1.
文摘Analytic Hardy and BMO spaces on the quantum torus are introduced. Some basic properties of these spaces are presented. In particular, the associated H 1-BMO duality theorem is proved. Finally, we discuss some possible extensions of the obtained results.
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.
基金supported by the Zhejiang Provincial Natural Science Foundation (LY23A010003)the National Natural Science Foundation of China (11671357).
文摘Letμbe a positive Borel measure on the interval[0,1).The Hankel matrixHμ=(μn,k)n,k≥0 with entries μn,k=μn+k,whereμn=∫[0,1)tndμ(t),induces formally the operator asDHμ(f)(z)=∞∑n=0(∞∑k=0 μn,kak)z^(n),z∈D,where f(z)=∞∑n=0a_(n)z^(n) is an analytic function in D.We characterize the positive Borel measures on[0,1)such thatDHμ(f)(z)=f[0,1)f(t)/(1-tz)^(2)dμ(t) for all f in the Hardy spaces Hp(0<p<∞),and among these we describe those for which is a bounded(resp.,compact)operator from Hp(0<p<∞)into Hq(q>p and q≥1).We also study the analogous problem in the Hardy spaces H^(p)(1≤p≤2).
文摘This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).
基金supported by the National Natural Science Foundation of China(11771441 and 11601400)。
文摘We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of C^(n).Toeplitz operators are closely related to many classical mappings,such as composition operators,the Volterra type integration operators and Carleson embeddings.We characterize the boundedness and compactness of Toeplitz operators from Hardy spaces H^(p) to weighted Bergman spaces A_(α)^(q) for the different values of p and q in the unit ball.
文摘We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition and molecular decomposition we get the boundedness of singular integral operators on variable Hardy spaces. We investigate the Littlewood-Paley characterization by virtue of the boundedness of singular integral operators.
文摘In this paper, we discuss the boundedness of Marcinkiewicz integral μΩ with homogeneous kernel on the weighted Herz-type Hardy spaces, and prove that μΩ is bounded from HKq^a、P(ω1;ω2) into Kq^a、p (ω1; ω2).