Simultaneously improving the strength and electrical conductivity of conducting metallic materials is of great significance,but it still remains a key challenge as the two properties are often mutually exclusive.In th...Simultaneously improving the strength and electrical conductivity of conducting metallic materials is of great significance,but it still remains a key challenge as the two properties are often mutually exclusive.In this study,we demonstrate a“<111>oriented fibrous grains with ultra-high aspect ratio”strategy for breaking such a conflict in Cu wire,which relies on the distinctive spatial distribution of grain boundaries and the highly consistent hard orientation to play their respective roles in suffering loading and conducting,thereby enabling a separate optimization of both strength and electrical conductivity.Therefore,a processing route was designed,involving directional solidification followed by large drawing deformation,to successfully construct fibrous grains with an ultra-high aspect ratio in 596.7 and ultra-high<111>texture proportion over 97%,which achieves Cu wire with a remarkable combination of yield strength in 482.3 MPa and electrical conductivity in 101.63%IACS.Finally,the mechanisms for high strength and high electrical conductivity were quantitatively discussed.展开更多
Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.B...Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.Breaking through the limits of alloy materials is a preface and long-term topic,which is of great significance and value for improving the comprehensive mechanical properties of alloy materials.Here,we report on the discovery of a cubic alloy semiconducting material Ti_(2)Co with a large Vickers of hardness K_(v)^(exp)∼6.7GPa and low fracture toughness of K_(IC)^(exp)∼1.51MPa·m^(1/2).Unexpectedly,the K_(v)^(exp)∼6.7GPa is nearly triple of the K_(v)^(cal)∼2.66GPa predicted by density functional theory(DFT)calculations and theK_(IC)^(exp)∼1.51MPa·m^(1/2)is about one or two orders of magnitude smaller than that of ordinary titanium alloy materials(K_(IC)^(exp)∼30-120MPa·m^(1/2)).These specifications place Ti_(2)Co far from the phase space of the known alloy materials.Upon incorporation of oxygen into structural void positions,both values were simultaneously improved for Ti_(4)Co_(2)O to∼9.7GPa and∼2.19MPa·m^(1/2),respectively.Further DFT calculations on the electron localization function of Ti_(4)Co_(2)X(X=B,C,N,O)vs.the interstitial elements indicate that these simultaneous improvements originate from the coexistence of Ti-Co metallic bonds,the emergence of newly oriented Ti-X covalent bonds,and the increase of electron concentration.Moreover,the large difference between K_(v)^(exp)and K_(v)^(cal)of Ti_(2)Co suggests underlying mechanism concerning the absence of the O(16d)or Ti_(2)-O bonds in the O-(Ti_(2))_(6) octahedron.This discovery proposes a new pathway to simultaneously improve the comprehensive mechanical performances and illuminates the path of exploring superconducting materials with excellent mechanical performances.展开更多
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to...In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.展开更多
Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-te...Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs.展开更多
Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rat...Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rates. As electrical conductivity in the Earth's interior is highly sensitive to water content, it is an important geophysical parameter for understanding the deep Earth water content. Since its launch on May 21, 2023, the MSS-1(Macao Science Satellite-1) mission has operated for nearly one year, with its magnetometer achieving a precision of higher than 0.5 nT after orbital testing and calibration. Orbiting at 450 kilometers with a unique 41-degree inclination, the satellite enables high-density observations across multiple local times, allowing detailed monitoring of low-latitude regions and enhancing data for global conductivity imaging. To better understand the global distribution of water within the Earth's interior, it is crucial to study internal conductivity structure and water content distribution. To this aim, we introduce a method for using MSS-1 data to estamate induced magnetic fields related to magnetospheric currents. We then develop a trans-dimensional Bayesian approach to reveal Earth's internal conductivity, providing probable conductivity structure with an uncertainty analysis. Finally, by integrating known mineral composition, pressure, and temperature distribution within the mantle, we estimate the water content range in the mantle transition zone, concluding that this region may contain the equivalent of up to 3.0 oceans of water, providing compelling evidence that supports the hypothesis of a deep water cycle within the Earth's interior.展开更多
High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabrica...High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabricated via hot extrusion.The effects of La and Ce additions on the microstructure,thermal conductivity,and mechanical properties of the Mg-1.5Mn alloy were investigated.The results indicated that both the as-extruded Mg-1.5Mn-2.5La and Mg-1.5Mn-2.5Ce alloys exhibited a bimodal grain structure,with dynamically precipitated nano-scaleα-Mn phases.In comparison with La,the addition of Ce enhanced the dynamic precipitation more effectively during hot extrusion,while its influence on promoting the dynamic recrystallization was relatively weaker.The high tensile strength obtained in the as-extruded Mg-1.5Mn-2.5RE alloys can be attributed to the combined influence of the bimodal grain structure(with fine dynamic recrystallized(DRXed)grain size and high proportion of un-dynamic recrystallized(unDRXed)grains),dense nano-scale precipitates,and broken Mg12RE phases,while the remarkable thermal conductivity was due to the precipitation of Mn-rich phases from the Mg matrix.展开更多
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag...Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.展开更多
Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake gra...Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake graphite(FG)-modified MKPC coatings via spraying process,investigating the effects of FG size and dosage on phase composition,microstructure,mechanical properties,corrosion protection,and thermal conductivity.Results show that a low FG dosage(5 wt%)synergistically optimizes multifunctional performance.Compared to unmodified MKPC,FG2-1 exhibited exceptional impact resistance,associated with a 57%reduction in corrosion current density(icorr),a 356.3% increase in low-frequency impedance modulus(Z_(0.01 Hz))and a 37% increase in thermal conductivity.However,the coating with a high FG dosage(15 wt%)degraded performance due to defect accumulation and reduced crystallinity of KMgPO_(4)·6H_(2)O.This work advances the rational design of multifunctional inorganic coatings for extreme service environments requiring coupled corrosion protection and thermal management.展开更多
The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechan...The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechanical properties and related strengthening mechanisms has not been fully elucidated.Herein,under the same volume fraction and distribution conditions of graphene,molecular dynamics simulations were used to investigate the effect of graphene sheet size on the hardness and deformation behavior of Cu/graphene composites under complex stress field.Two models of pure single crystalline Cu and graphene fully covered Cu matrix composite were constructed for comparison.The results show that the strengthening effect changes with varying the graphene sheet size.Besides the graphene dislocation blocking effect and the load-bearing effect,the deformation mechanisms change from stacking fault tetrahedron,dislocation bypassing and dislocation cutting to dislocation nucleation in turn with decreasing the graphene sheet size.The hardness of Cu/graphene composite,with the graphene sheet not completely covering the metal matrix,can even be higher than that of the fully covered composite.The extra strengthening mechanisms of dislocation bypassing mechanism and the stacking fault tetrahedra pinning dislocation mechanism contribute to the increase in hardness.展开更多
The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the developme...The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization.展开更多
A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed ...A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed by high-temperature annealing for 4-22 h.The X-ray diffrac-tion method showed that the fluorite structure was realized for(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.75-0.817).The solid solution Tb_(3.12)Ti_(0.88)O_(6.44)(64mol%Tb_(2)O_(3)(x=0.78))with a fluorite structure exhibited a maximum hole conductivity of~22 S/cm at 600℃.To separate the ionic component of the conductivity in the electronic conductor Tb_(3.12)Ti_(0.88)O_(6.44),its high entropy analogue,(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44),was synthesized in which all rare-earth elements(REE)cations exhibited valency of+3.Consequently,the contribution of ionic(proton)conductivity(~7×10^(−6)S/cm at 600℃)was revealed with respect to the background of dominant hole conductivity.The proton conduct-ivity of high-entropy oxide(HEО)(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44)was confirmed by the detection of the isotope effect,where the mobility of the heavier O-D ions was lower than that of the O-H hydroxyls,resulting in lower conductivity in D_(2)O vapors when com-pared to H_(2)O.展开更多
We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresp...We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresponding extended ab initio data set,we construct interpolation formulas covering the range from low-density,high-temperature to high-density,low-temperature plasmas.Our conductivity model repro-duces the well-known limits of the Spitzer and Ziman theory.We compare with available experimental data andfind very good agreement.The new conductivity model can be applied,for example,in dynamo simulations for magneticfield generation in gas giant planets,brown dwarfs,and stellar envelopes.展开更多
As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal con...As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal conductivity of many competitive oxide-based magnetic refrigerants,exemplified by EuTiO3-based compounds,acts as a major limitation to their practical application.Therefore,improving the thermal conductivity of magnetic refrigeration materials has become a research emphasis of magnetic refrigeration in recent years.In this work,a series of EuTiO_(3)(ETO)/Cu composites with different copper additives was prepared using a solid-phase reaction method by introducing appropriate amounts of copper powder.The influence of the introduction of copper on the phase composition,microstructure,thermal conductivity,and magnetocaloric effect of the composites was systematically investigated.Unexpectedly,the thermal conductivity of the composites is enhanced by up to 260%due to copper addition,accompanied by only a 5%decrease in magnetic entropy change and refrigerating capacity.Copper additive forms localized thermal conductive networks and promotes the densification process,resulting in significantly enhanced thermal conductivity of the composites.This work demonstrates the feasibility of improving the thermal conductivity of oxide-base d magnetic refrigeration materials by introducing highly thermally conductive substances.展开更多
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr...Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.展开更多
Polyvinyl alcohol(PVA)hydrogels doped with cyclohexane-1,2,3,4,5,6-hexacarboxylic acid(CHA)were successfully prepared during drying and swelling.Structural and morphological characterizations suggest the carboxyl and ...Polyvinyl alcohol(PVA)hydrogels doped with cyclohexane-1,2,3,4,5,6-hexacarboxylic acid(CHA)were successfully prepared during drying and swelling.Structural and morphological characterizations suggest the carboxyl and hydroxyl groups in the material undergo esterification during the preparation of the material,which contributes to the high transparency with 90%transmittance in the 400 to 800 nm range and robust mechanical properties of the material with a tensile strength at a break of 27.55 MPa.It is noteworthy that the bending and torsion angles exhibit a strong linear correlation with electrical resistance,enabling the monitoring of the bending motion state of each human body segment.展开更多
Self-designed Al8Si0.4Mg0.4Fe aluminium alloy was modified with Sr,followed by solid solution and aging treatments to regulate its microstructure and mechanical/electrical properties.The results show that after the mo...Self-designed Al8Si0.4Mg0.4Fe aluminium alloy was modified with Sr,followed by solid solution and aging treatments to regulate its microstructure and mechanical/electrical properties.The results show that after the modification treatment,the room-temperature tensile strength of the alloy remains nearly unchanged,the elongation at break slightly increases from 1.82%to 3.34%,and the electrical conductivity significantly increases from 40.1%international annealed copper standard(IACS)to 42.0%IACS.After the modification,the alloy was subjected to solid solution treatment at 515℃for 8 h,followed by aging treatment at 180,200,220 and 240℃for 6 h.With increasing aging temperature,the electrical conductivity increases monotonously from 41.4%IACS to 45.5%IACS,while the room-temperature tensile strength initially increases and then decreases.At 200℃,the alloy achieves an optimal balance between electrical conductivity and room-temperature tensile strength:the electrical conductivity is 42.5%IACS,and the room-temperature tensile strength is 282.9 MPa.When the aging temperature continues to rise,the alloy undergoes overaging.Although the conductivity continues to increase,the room-temperature tensile strength drops sharply,and it is only 177.1 MPa at 240℃.展开更多
Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil wate...Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.展开更多
As a natural biopolymer material,silk fibroin with unique mechanical properties can be used in the preparation of biocomposite hydrogels for strain sensors.But,the electromechanical properties of bio-composite hydroge...As a natural biopolymer material,silk fibroin with unique mechanical properties can be used in the preparation of biocomposite hydrogels for strain sensors.But,the electromechanical properties of bio-composite hydrogel strain sensors are still insufficient,such as the deterioration of electrical signals and low sensitivity,which need to develop a hydrogel with a stable transmission network for electric con-duction.Herein,a silk fibroin biocomposite hydrogel is prepared by incorporating tannic acid and MXene nanosheets into a polyacrylamide and silk fibroin double network.The electromechanical properties of hydrogels are improved by optimizing the proportion of material components.As a result,the double network structure and supramolecular interaction enhance the stretchability of hydrogels(692% fracture strain).The hydrogel also exhibits good biocompatibility and conductivity(0.85 S/m),which shows the application prospect in wearable sensors.The wireless strain sensor assembled by this biocomposite hy-drogel presents good portability and sensing performance,such as high sensitivity(gauge factor=6.04),wide working range(500% strain),and outstanding stability(1000 cycles at 100%strain).The results in-dicate that the hydrogel strain sensor can be used to monitor human body movement.The biocomposite hydrogel is expected to be applied in the field of wearable strain sensors,and this study can provide a new way for the design of flexible electronic materials.展开更多
Interface design for synergistic improvement of the thermal conductivity and dielectric properties of dielectrics is urgently needed but still challenging for the next generation of electronic and electrical equipment...Interface design for synergistic improvement of the thermal conductivity and dielectric properties of dielectrics is urgently needed but still challenging for the next generation of electronic and electrical equipment development.Herein,the authors report a strategy to screen structural units for the interface design of polymer dielectrics working under high-frequency and high-voltage conditions.Thermal conductivity,dielectric loss,the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)gap are employed as key parameters to be considered simultaneously in the interface design for the screening.The authors find that a rigid ring with hydroxyl groups at symmetric sites can suppress the steric hindrance of neighbouring hydrogen bonds,leading to a better phonon spectrum matching and more efficient suppression of molecular chain segment motion,which ensures the dielectric insulating performance and thermal conduction performance simultaneously.Typically,alkyl polyglucoside(APG)was selected as the optimal modifier to demonstrate the interface designing principle experimentally,exhibiting improved thermal conductivity and suppressed dielectric loss,ultimately resulting in a 4.98-fold increase in the high-frequency breakdown time.This study provides important insights into decisive structural factors necessary to achieve dielectrics with excellent insulating properties under high-frequency applications.展开更多
Hardness is widely regarded as a critical factor influencing the whole texture of fish flesh.The objective of this study was to elucidate the regulatory mechanism underlying muscle hardness in hybrid bream(BBTB,Megalo...Hardness is widely regarded as a critical factor influencing the whole texture of fish flesh.The objective of this study was to elucidate the regulatory mechanism underlying muscle hardness in hybrid bream(BBTB,Megalobrama amblycephala♀×Culter alburnus♂).A comparison of the physiological features of high hardness(HH)and low hardness(LH)muscle revealed that the former had higher contents of collagen I and lower muscle fiber diameter.Transcriptomic data revealed that the myofiber assembly pathway and the HIF-1 signaling pathway were activated in HH muscle.At the metabolic level,the categories of amino acids and lipids were the principal differentially abundant metabolites between the HH and LH muscle.The detection of amino acid profiles further revealed significant differences in amino acid metabolism between the HH and LH muscles,with the HH muscle having higher levels of amino acids than the LH muscle,especially hydroxypro-line(Hyp).Furthermore,through supplementation of Hyp in BBTB myoblasts,the results indicated that 0.8 mmol/L Hyp increased the proliferation,differentiation,migration,and collagen synthesis of myoblasts.Finally,BBTB was treated with Hyp intraperitoneally for 15 days.The results revealed that 0.1 g/kg Hyp significantly increased muscle hardness,myofiber density,myofibrillar protein synthesis,and HIF-1 protein content.The results obtained in this study indicated that Hyp supplementation promoted collagen synthesis and proliferation of myoblast and muscle fibers in the BBTB,which may be induced by activation of the transcription factor HIF1 and contributes to the impacts of Hyp on improvements in muscle hardness in the BBTB.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.52001313,52130002,52273322,and 52321001IMR Innovation Fund under Grant No.2023-PY05+3 种基金the Natural Science Foundation of Liaoning Province under Grant No.2022-MS-001the China Postdoctoral Science Foundation under Grant No.GZC20232740the Zhongke Technology Achievement Transfer and Transformation Center of Henan Province under Grant No.2024109the Joint Research Project between Chinese Academy of Sciences(CAS)under Grant No.174321KYSB20210002.
文摘Simultaneously improving the strength and electrical conductivity of conducting metallic materials is of great significance,but it still remains a key challenge as the two properties are often mutually exclusive.In this study,we demonstrate a“<111>oriented fibrous grains with ultra-high aspect ratio”strategy for breaking such a conflict in Cu wire,which relies on the distinctive spatial distribution of grain boundaries and the highly consistent hard orientation to play their respective roles in suffering loading and conducting,thereby enabling a separate optimization of both strength and electrical conductivity.Therefore,a processing route was designed,involving directional solidification followed by large drawing deformation,to successfully construct fibrous grains with an ultra-high aspect ratio in 596.7 and ultra-high<111>texture proportion over 97%,which achieves Cu wire with a remarkable combination of yield strength in 482.3 MPa and electrical conductivity in 101.63%IACS.Finally,the mechanisms for high strength and high electrical conductivity were quantitatively discussed.
基金supported by the National Key Research and Development Program of China(Grant Nos.2024YFA1408400,2023YFA1406100,2023YFA1607400,2022YFA1403800,and 2022YFA1403203)the National Natural Science Foundation of China(Grant Nos.12474055,12404067,12025408,52025026,and U23A6003)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the Chinese Academy of Sciences President’s International Fellowship Initiative(Grant No.2024PG0003)the Outstanding Member of Youth Promotion Association of Chinese Academy of Sciences(Grant No.Y2022004)supported by the CAC station of Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.Breaking through the limits of alloy materials is a preface and long-term topic,which is of great significance and value for improving the comprehensive mechanical properties of alloy materials.Here,we report on the discovery of a cubic alloy semiconducting material Ti_(2)Co with a large Vickers of hardness K_(v)^(exp)∼6.7GPa and low fracture toughness of K_(IC)^(exp)∼1.51MPa·m^(1/2).Unexpectedly,the K_(v)^(exp)∼6.7GPa is nearly triple of the K_(v)^(cal)∼2.66GPa predicted by density functional theory(DFT)calculations and theK_(IC)^(exp)∼1.51MPa·m^(1/2)is about one or two orders of magnitude smaller than that of ordinary titanium alloy materials(K_(IC)^(exp)∼30-120MPa·m^(1/2)).These specifications place Ti_(2)Co far from the phase space of the known alloy materials.Upon incorporation of oxygen into structural void positions,both values were simultaneously improved for Ti_(4)Co_(2)O to∼9.7GPa and∼2.19MPa·m^(1/2),respectively.Further DFT calculations on the electron localization function of Ti_(4)Co_(2)X(X=B,C,N,O)vs.the interstitial elements indicate that these simultaneous improvements originate from the coexistence of Ti-Co metallic bonds,the emergence of newly oriented Ti-X covalent bonds,and the increase of electron concentration.Moreover,the large difference between K_(v)^(exp)and K_(v)^(cal)of Ti_(2)Co suggests underlying mechanism concerning the absence of the O(16d)or Ti_(2)-O bonds in the O-(Ti_(2))_(6) octahedron.This discovery proposes a new pathway to simultaneously improve the comprehensive mechanical performances and illuminates the path of exploring superconducting materials with excellent mechanical performances.
文摘In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.
基金support from Yunnan Major Scientific and Technological Projects(No.202302AG050010)Yunnan Fundamental Research Projects(Nos.202101AW070011 and202101BE070001–015)+1 种基金National Natural Science Foundation of China(No.52303295)Project Funds of“Xingdian Talent Support Program”.
文摘Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs.
基金financially supported by the National Natural Science Foundation of China(42250102,42250101)the Macao Foundation.
文摘Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rates. As electrical conductivity in the Earth's interior is highly sensitive to water content, it is an important geophysical parameter for understanding the deep Earth water content. Since its launch on May 21, 2023, the MSS-1(Macao Science Satellite-1) mission has operated for nearly one year, with its magnetometer achieving a precision of higher than 0.5 nT after orbital testing and calibration. Orbiting at 450 kilometers with a unique 41-degree inclination, the satellite enables high-density observations across multiple local times, allowing detailed monitoring of low-latitude regions and enhancing data for global conductivity imaging. To better understand the global distribution of water within the Earth's interior, it is crucial to study internal conductivity structure and water content distribution. To this aim, we introduce a method for using MSS-1 data to estamate induced magnetic fields related to magnetospheric currents. We then develop a trans-dimensional Bayesian approach to reveal Earth's internal conductivity, providing probable conductivity structure with an uncertainty analysis. Finally, by integrating known mineral composition, pressure, and temperature distribution within the mantle, we estimate the water content range in the mantle transition zone, concluding that this region may contain the equivalent of up to 3.0 oceans of water, providing compelling evidence that supports the hypothesis of a deep water cycle within the Earth's interior.
基金supported by National Key Research&Development Program of China(Grant Nos.2021YFB3703300,2021YFE010016 and 2020YFA0405900)National Natural Science Foundation(Grant Nos.52220105003 and 51971075)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.FRFCU5710000918)Natural Science Foundation of Heilongjiang Province-Outstanding Youth Fund(Grant No.YQ2020E006)JSPS KAKENHI(Grant No.JP21H01669).
文摘High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabricated via hot extrusion.The effects of La and Ce additions on the microstructure,thermal conductivity,and mechanical properties of the Mg-1.5Mn alloy were investigated.The results indicated that both the as-extruded Mg-1.5Mn-2.5La and Mg-1.5Mn-2.5Ce alloys exhibited a bimodal grain structure,with dynamically precipitated nano-scaleα-Mn phases.In comparison with La,the addition of Ce enhanced the dynamic precipitation more effectively during hot extrusion,while its influence on promoting the dynamic recrystallization was relatively weaker.The high tensile strength obtained in the as-extruded Mg-1.5Mn-2.5RE alloys can be attributed to the combined influence of the bimodal grain structure(with fine dynamic recrystallized(DRXed)grain size and high proportion of un-dynamic recrystallized(unDRXed)grains),dense nano-scale precipitates,and broken Mg12RE phases,while the remarkable thermal conductivity was due to the precipitation of Mn-rich phases from the Mg matrix.
基金supported by the National Natural Science Foundation of China(Nos.22171102 and 22090044)the National Key R&D Program of China(Nos.2021YFF0500502 and 2023YFA1506304)+2 种基金the Jilin Province Science and Technology Development Plan(No.20230101024JC)the"Medicine+X"crossinnovation team of Bethune Medical Department of Jilin University"Leading the Charge with Open Competition"construction project(No.2022JBGS04)the Jilin University Graduate Training Office(Nos.2021JGZ08 and 2022YJSJIP20).
文摘Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.
基金National Key Research and Development Program of China(2024YFB3714804)National Natural Science Foundation of China(52171277)+1 种基金Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(LBMHZ24E020001)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SZ-TD006).
文摘Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake graphite(FG)-modified MKPC coatings via spraying process,investigating the effects of FG size and dosage on phase composition,microstructure,mechanical properties,corrosion protection,and thermal conductivity.Results show that a low FG dosage(5 wt%)synergistically optimizes multifunctional performance.Compared to unmodified MKPC,FG2-1 exhibited exceptional impact resistance,associated with a 57%reduction in corrosion current density(icorr),a 356.3% increase in low-frequency impedance modulus(Z_(0.01 Hz))and a 37% increase in thermal conductivity.However,the coating with a high FG dosage(15 wt%)degraded performance due to defect accumulation and reduced crystallinity of KMgPO_(4)·6H_(2)O.This work advances the rational design of multifunctional inorganic coatings for extreme service environments requiring coupled corrosion protection and thermal management.
基金Foundation of Northwest Institute for Nonferrous Metal Research(ZZXJ2203)Capital Projects of Financial Department of Shaanxi Province(YK22C-12)+3 种基金Innovation Capability Support Plan in Shaanxi Province(2023KJXX-083)Key Research and Development Projects of Shaanxi Province(2024GXYBXM-351,2024GX-YBXM-356)National Natural Science Foundation of China(62204207,12204383)Xi'an Postdoctoral Innovation Base Funding Program。
文摘The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechanical properties and related strengthening mechanisms has not been fully elucidated.Herein,under the same volume fraction and distribution conditions of graphene,molecular dynamics simulations were used to investigate the effect of graphene sheet size on the hardness and deformation behavior of Cu/graphene composites under complex stress field.Two models of pure single crystalline Cu and graphene fully covered Cu matrix composite were constructed for comparison.The results show that the strengthening effect changes with varying the graphene sheet size.Besides the graphene dislocation blocking effect and the load-bearing effect,the deformation mechanisms change from stacking fault tetrahedron,dislocation bypassing and dislocation cutting to dislocation nucleation in turn with decreasing the graphene sheet size.The hardness of Cu/graphene composite,with the graphene sheet not completely covering the metal matrix,can even be higher than that of the fully covered composite.The extra strengthening mechanisms of dislocation bypassing mechanism and the stacking fault tetrahedra pinning dislocation mechanism contribute to the increase in hardness.
文摘The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization.
基金the state assignment on the topic“Interdisciplinary approaches to the creation and study of micro-/nanostructured systems”(No.125012200595-8)Conductivity measurements of the samples were performed in accordance with the state task for FRC PCP and MC RAS(No.124013000692-4).
文摘A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed by high-temperature annealing for 4-22 h.The X-ray diffrac-tion method showed that the fluorite structure was realized for(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.75-0.817).The solid solution Tb_(3.12)Ti_(0.88)O_(6.44)(64mol%Tb_(2)O_(3)(x=0.78))with a fluorite structure exhibited a maximum hole conductivity of~22 S/cm at 600℃.To separate the ionic component of the conductivity in the electronic conductor Tb_(3.12)Ti_(0.88)O_(6.44),its high entropy analogue,(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44),was synthesized in which all rare-earth elements(REE)cations exhibited valency of+3.Consequently,the contribution of ionic(proton)conductivity(~7×10^(−6)S/cm at 600℃)was revealed with respect to the background of dominant hole conductivity.The proton conduct-ivity of high-entropy oxide(HEО)(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44)was confirmed by the detection of the isotope effect,where the mobility of the heavier O-D ions was lower than that of the O-H hydroxyls,resulting in lower conductivity in D_(2)O vapors when com-pared to H_(2)O.
基金supported by the Priority Program SPP 1992 of the German Science Foundation(DFG)The Diversity of Exoplanets under project number 362460292.
文摘We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresponding extended ab initio data set,we construct interpolation formulas covering the range from low-density,high-temperature to high-density,low-temperature plasmas.Our conductivity model repro-duces the well-known limits of the Spitzer and Ziman theory.We compare with available experimental data andfind very good agreement.The new conductivity model can be applied,for example,in dynamo simulations for magneticfield generation in gas giant planets,brown dwarfs,and stellar envelopes.
基金Project supported by the National Key R&D Program of China(2021YFB3501204)the National Science Fund for Distinguished Young Scholars(51925605)+1 种基金the National Science Foundation for Excellent Young Scholars(52222107)the National Natural Science Foundation of China(52171195,52201036)。
文摘As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal conductivity of many competitive oxide-based magnetic refrigerants,exemplified by EuTiO3-based compounds,acts as a major limitation to their practical application.Therefore,improving the thermal conductivity of magnetic refrigeration materials has become a research emphasis of magnetic refrigeration in recent years.In this work,a series of EuTiO_(3)(ETO)/Cu composites with different copper additives was prepared using a solid-phase reaction method by introducing appropriate amounts of copper powder.The influence of the introduction of copper on the phase composition,microstructure,thermal conductivity,and magnetocaloric effect of the composites was systematically investigated.Unexpectedly,the thermal conductivity of the composites is enhanced by up to 260%due to copper addition,accompanied by only a 5%decrease in magnetic entropy change and refrigerating capacity.Copper additive forms localized thermal conductive networks and promotes the densification process,resulting in significantly enhanced thermal conductivity of the composites.This work demonstrates the feasibility of improving the thermal conductivity of oxide-base d magnetic refrigeration materials by introducing highly thermally conductive substances.
基金supported by the National Natural Science Foundation of China (Grant Nos. 22475179 and 22275173)。
文摘Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.
基金Funded by the National Natural Science Foundation of China(No.22005151)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(No.NY220127)。
文摘Polyvinyl alcohol(PVA)hydrogels doped with cyclohexane-1,2,3,4,5,6-hexacarboxylic acid(CHA)were successfully prepared during drying and swelling.Structural and morphological characterizations suggest the carboxyl and hydroxyl groups in the material undergo esterification during the preparation of the material,which contributes to the high transparency with 90%transmittance in the 400 to 800 nm range and robust mechanical properties of the material with a tensile strength at a break of 27.55 MPa.It is noteworthy that the bending and torsion angles exhibit a strong linear correlation with electrical resistance,enabling the monitoring of the bending motion state of each human body segment.
基金Applied Basic Research Program of Liaoning Province(CN)(2022JH2/101300078)。
文摘Self-designed Al8Si0.4Mg0.4Fe aluminium alloy was modified with Sr,followed by solid solution and aging treatments to regulate its microstructure and mechanical/electrical properties.The results show that after the modification treatment,the room-temperature tensile strength of the alloy remains nearly unchanged,the elongation at break slightly increases from 1.82%to 3.34%,and the electrical conductivity significantly increases from 40.1%international annealed copper standard(IACS)to 42.0%IACS.After the modification,the alloy was subjected to solid solution treatment at 515℃for 8 h,followed by aging treatment at 180,200,220 and 240℃for 6 h.With increasing aging temperature,the electrical conductivity increases monotonously from 41.4%IACS to 45.5%IACS,while the room-temperature tensile strength initially increases and then decreases.At 200℃,the alloy achieves an optimal balance between electrical conductivity and room-temperature tensile strength:the electrical conductivity is 42.5%IACS,and the room-temperature tensile strength is 282.9 MPa.When the aging temperature continues to rise,the alloy undergoes overaging.Although the conductivity continues to increase,the room-temperature tensile strength drops sharply,and it is only 177.1 MPa at 240℃.
基金supported by the National Natural Science Foundation of China(Grant No.41825018)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090402)the National Natural Science Foundation of China(Grant No.42141009).
文摘Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.
基金supported by the National Key Re-search and Development Program of China(No.2021YFA0715700)the National Natural Science Foundation of China(No.52003212).
文摘As a natural biopolymer material,silk fibroin with unique mechanical properties can be used in the preparation of biocomposite hydrogels for strain sensors.But,the electromechanical properties of bio-composite hydrogel strain sensors are still insufficient,such as the deterioration of electrical signals and low sensitivity,which need to develop a hydrogel with a stable transmission network for electric con-duction.Herein,a silk fibroin biocomposite hydrogel is prepared by incorporating tannic acid and MXene nanosheets into a polyacrylamide and silk fibroin double network.The electromechanical properties of hydrogels are improved by optimizing the proportion of material components.As a result,the double network structure and supramolecular interaction enhance the stretchability of hydrogels(692% fracture strain).The hydrogel also exhibits good biocompatibility and conductivity(0.85 S/m),which shows the application prospect in wearable sensors.The wireless strain sensor assembled by this biocomposite hy-drogel presents good portability and sensing performance,such as high sensitivity(gauge factor=6.04),wide working range(500% strain),and outstanding stability(1000 cycles at 100%strain).The results in-dicate that the hydrogel strain sensor can be used to monitor human body movement.The biocomposite hydrogel is expected to be applied in the field of wearable strain sensors,and this study can provide a new way for the design of flexible electronic materials.
基金supported by National Key Research and Development Program of China(Grant No.2023YFB2408200).
文摘Interface design for synergistic improvement of the thermal conductivity and dielectric properties of dielectrics is urgently needed but still challenging for the next generation of electronic and electrical equipment development.Herein,the authors report a strategy to screen structural units for the interface design of polymer dielectrics working under high-frequency and high-voltage conditions.Thermal conductivity,dielectric loss,the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)gap are employed as key parameters to be considered simultaneously in the interface design for the screening.The authors find that a rigid ring with hydroxyl groups at symmetric sites can suppress the steric hindrance of neighbouring hydrogen bonds,leading to a better phonon spectrum matching and more efficient suppression of molecular chain segment motion,which ensures the dielectric insulating performance and thermal conduction performance simultaneously.Typically,alkyl polyglucoside(APG)was selected as the optimal modifier to demonstrate the interface designing principle experimentally,exhibiting improved thermal conductivity and suppressed dielectric loss,ultimately resulting in a 4.98-fold increase in the high-frequency breakdown time.This study provides important insights into decisive structural factors necessary to achieve dielectrics with excellent insulating properties under high-frequency applications.
基金supported by the National Key Research and Development Plan Program of China(2022YFD2400600/2022YFD2400601/2022YFD2400603)the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC1072)+1 种基金Scientific Research Fund of Hunan Provincial Education Department(Grant No.24B0799)the earmarked fund for HARS(HARS-07).
文摘Hardness is widely regarded as a critical factor influencing the whole texture of fish flesh.The objective of this study was to elucidate the regulatory mechanism underlying muscle hardness in hybrid bream(BBTB,Megalobrama amblycephala♀×Culter alburnus♂).A comparison of the physiological features of high hardness(HH)and low hardness(LH)muscle revealed that the former had higher contents of collagen I and lower muscle fiber diameter.Transcriptomic data revealed that the myofiber assembly pathway and the HIF-1 signaling pathway were activated in HH muscle.At the metabolic level,the categories of amino acids and lipids were the principal differentially abundant metabolites between the HH and LH muscle.The detection of amino acid profiles further revealed significant differences in amino acid metabolism between the HH and LH muscles,with the HH muscle having higher levels of amino acids than the LH muscle,especially hydroxypro-line(Hyp).Furthermore,through supplementation of Hyp in BBTB myoblasts,the results indicated that 0.8 mmol/L Hyp increased the proliferation,differentiation,migration,and collagen synthesis of myoblasts.Finally,BBTB was treated with Hyp intraperitoneally for 15 days.The results revealed that 0.1 g/kg Hyp significantly increased muscle hardness,myofiber density,myofibrillar protein synthesis,and HIF-1 protein content.The results obtained in this study indicated that Hyp supplementation promoted collagen synthesis and proliferation of myoblast and muscle fibers in the BBTB,which may be induced by activation of the transcription factor HIF1 and contributes to the impacts of Hyp on improvements in muscle hardness in the BBTB.