In the realm of virtual reality(VR),haptic feedback is integral to enhance the immersive experience;yet,existing wearable devices predominantly rely on skin contact feedback,lacking options for compact and non-contact...In the realm of virtual reality(VR),haptic feedback is integral to enhance the immersive experience;yet,existing wearable devices predominantly rely on skin contact feedback,lacking options for compact and non-contact breeze-sense feedback.Herein,we propose a compact and non-contact working model piezoelectret actuator for providing a gentle and safe breeze sensation.This easy-fabricated and flexible breeze-sense generator with thickness around 1 mm generates air flow pressure up to~163 Pa,which is significantly sensed by human skin.In a typical demonstration,the breeze-sense generators array showcases its versatility by employing multiple coded modes for non-contact information transmitting.The thin thinness and good flexibility facilitate seamless integration with wearable VR setups,and the wearable arrays empower volunteers to precisely perceive the continuous and sudden breeze senses in the virtual environments.This work is expected to inspire developing new haptic feedback devices that play pivotal roles in human-machine interfaces for VR applications.展开更多
Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in v...Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.展开更多
Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training thro...Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training through practical exercises on abstracted and reduced models.Methods The authors strive for a portable,easy to use and cost-effective Virtual Reality-based(VR)laparoscopic pre-training platform and therefore address the question of how such a system has to be designed to achieve the quality of today's gold standard using real tissue specimens.Current VR controllers are limited regarding haptic feedback.Since haptic feedback is necessary or at least beneficial for laparoscopic surgery training,the platform to be developed consists of a newly designed prototype laparoscopic VR controller with haptic feedback,a commercially available head-mounted display,a VR environment for simulating a laparoscopic surgery,and a training concept.Results To take full advantage of benefits such as repeatability and cost-effectiveness of VR-based training,the system shall not require a tissue sample for haptic feedback.It is currently calculated and visually displayed to the user in the VR environment.On the prototype controller,a first axis was provided with perceptible feedback for test purposes.Two of the prototype VR controllers can be combined to simulate a typical both-handed use case,e.g.,laparoscopic suturing.A Unity based VR prototype allows the execution of simple standard pre-trainings.Conclusions The first prototype enables full operation of a virtual laparoscopic instrument in VR.In addition,the simulation can compute simple interaction forces.Major challenges lie in a realistic real-time tissue simulation and calculation of forces for the haptic feedback.Mechanical weaknesses were identified in the first hardware prototype,which will be improved in subsequent versions.All degrees of freedom of the controller are to be provided with haptic feedback.To make forces tangible in the simulation,characteristic values need to be determined using real tissue samples.The system has yet to be validated by cross-comparing real and VR haptics with surgeons.展开更多
On account of the high computational speed required for force feedback and the detailed graphic required for deformation feedback, this paper presents a real time and efficient haptic feedback framework by subdividing...On account of the high computational speed required for force feedback and the detailed graphic required for deformation feedback, this paper presents a real time and efficient haptic feedback framework by subdividing the area of interest on a relatively coarse triangular mesh. When a contact is detected, a portion of the colliding surface is subdivided and a particle system produced, which is used for deformation based on the approximate velocity cone theory. Simultaneously, a spring\|damper model is used ...展开更多
Background With the increase in recent years of the utilization of multimedia devices in education,new haptic devices for education have been gradually adopted and developed.As compared with visual and auditory channe...Background With the increase in recent years of the utilization of multimedia devices in education,new haptic devices for education have been gradually adopted and developed.As compared with visual and auditory channels,the development of applications with a haptic channel is still in the initial stages.For example,it is unclear how force feedback influences an instructional effect of an educational application and the subjective feeling of users.Methods In this study,we designed an educational application with a haptic device(Haply)to explore the effects of force feedback on self learning.Subjects in an experiment group used a designed application to study friction by themselves using force feedback,whereas subjects in a control group studied the same knowledge without force feedback.A post-test and questionnaire were designed to assess the learning outcomes.Results/Conclusions The experimental result indicates that force feedback is beneficial to an educational application,and using a haptic device can improve the effect of the application and motivate students.展开更多
As a core element of human-computer interaction,haptic feedback technology has demonstrated significant value in various fields such as virtual reality,teleoperation,and healthcare.However,traditional rigid haptic fee...As a core element of human-computer interaction,haptic feedback technology has demonstrated significant value in various fields such as virtual reality,teleoperation,and healthcare.However,traditional rigid haptic feedback devices have limitations in their application scenarios due to issues such as bulkiness and poor compatibility.Flexible haptic feedback actuators,with their advantages of lightweight,compliance,and high integration,have become a key direction to break through the existing technological bottlenecks.This review systematically summarizes the material systems,actuation principles,feedback modalities,and applications of flexible haptic feedback actuators.In addition,the article discusses the future challenges and development trends in this field,including high-precision,high-resolution,multidimensional haptic sensing,and integration with cutting-edge technology.By integrating the current development progress of flexible haptic feedback actuators,this review aims to provide theoretical references and technical routes for the development of next-generation flexible haptic feedback systems,in order to promote the practical application of flexible haptic technology in complex scenarios.展开更多
To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. ...To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.展开更多
A haptic device is proposed which gives the user feedback information on their location and orientation of the obstacle through the mobile robot that detects the obstacle in an environment where the user cannot see.Mo...A haptic device is proposed which gives the user feedback information on their location and orientation of the obstacle through the mobile robot that detects the obstacle in an environment where the user cannot see.Mobile robot recognizes the exact position of the obstacle through configuring the nested ultrasonic sensor and giving feedback information to the haptic device.The haptic device consisting of five vibration motors can realize the haptic through the vibration of user's finger using the position information of the obstacle received feedback.In addition,it has high accuracy to recognize the surrounding environment and realizes the various situations with the fuzzy controller and the nested ultrasonic sensors.展开更多
基金supported by the Science and Technology Development Fund of Macao SAR(File No.0117/2024/AMJ)University of Macao(MYRG-GRG2023-00041-FST-UMDF,MYRG-GRG2024-00121-FST,MYRG-CRG2024-00014-FST-ICI)Zhuhai UM Science&Technology Research Institute(CP-009-2024).
文摘In the realm of virtual reality(VR),haptic feedback is integral to enhance the immersive experience;yet,existing wearable devices predominantly rely on skin contact feedback,lacking options for compact and non-contact breeze-sense feedback.Herein,we propose a compact and non-contact working model piezoelectret actuator for providing a gentle and safe breeze sensation.This easy-fabricated and flexible breeze-sense generator with thickness around 1 mm generates air flow pressure up to~163 Pa,which is significantly sensed by human skin.In a typical demonstration,the breeze-sense generators array showcases its versatility by employing multiple coded modes for non-contact information transmitting.The thin thinness and good flexibility facilitate seamless integration with wearable VR setups,and the wearable arrays empower volunteers to precisely perceive the continuous and sudden breeze senses in the virtual environments.This work is expected to inspire developing new haptic feedback devices that play pivotal roles in human-machine interfaces for VR applications.
基金Supported by the Natienal Natural Science Foundation of China(U23A20287).
文摘Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.
文摘Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training through practical exercises on abstracted and reduced models.Methods The authors strive for a portable,easy to use and cost-effective Virtual Reality-based(VR)laparoscopic pre-training platform and therefore address the question of how such a system has to be designed to achieve the quality of today's gold standard using real tissue specimens.Current VR controllers are limited regarding haptic feedback.Since haptic feedback is necessary or at least beneficial for laparoscopic surgery training,the platform to be developed consists of a newly designed prototype laparoscopic VR controller with haptic feedback,a commercially available head-mounted display,a VR environment for simulating a laparoscopic surgery,and a training concept.Results To take full advantage of benefits such as repeatability and cost-effectiveness of VR-based training,the system shall not require a tissue sample for haptic feedback.It is currently calculated and visually displayed to the user in the VR environment.On the prototype controller,a first axis was provided with perceptible feedback for test purposes.Two of the prototype VR controllers can be combined to simulate a typical both-handed use case,e.g.,laparoscopic suturing.A Unity based VR prototype allows the execution of simple standard pre-trainings.Conclusions The first prototype enables full operation of a virtual laparoscopic instrument in VR.In addition,the simulation can compute simple interaction forces.Major challenges lie in a realistic real-time tissue simulation and calculation of forces for the haptic feedback.Mechanical weaknesses were identified in the first hardware prototype,which will be improved in subsequent versions.All degrees of freedom of the controller are to be provided with haptic feedback.To make forces tangible in the simulation,characteristic values need to be determined using real tissue samples.The system has yet to be validated by cross-comparing real and VR haptics with surgeons.
基金Aeronautical Science Foundation of China (99A5 2 0 0 7)
文摘On account of the high computational speed required for force feedback and the detailed graphic required for deformation feedback, this paper presents a real time and efficient haptic feedback framework by subdividing the area of interest on a relatively coarse triangular mesh. When a contact is detected, a portion of the colliding surface is subdivided and a particle system produced, which is used for deformation based on the approximate velocity cone theory. Simultaneously, a spring\|damper model is used ...
基金the National Key Research and Development Program of China(2018YFB1005002)the National Natural Science Foundation of China(61631010)the 111 Project(B18005).
文摘Background With the increase in recent years of the utilization of multimedia devices in education,new haptic devices for education have been gradually adopted and developed.As compared with visual and auditory channels,the development of applications with a haptic channel is still in the initial stages.For example,it is unclear how force feedback influences an instructional effect of an educational application and the subjective feeling of users.Methods In this study,we designed an educational application with a haptic device(Haply)to explore the effects of force feedback on self learning.Subjects in an experiment group used a designed application to study friction by themselves using force feedback,whereas subjects in a control group studied the same knowledge without force feedback.A post-test and questionnaire were designed to assess the learning outcomes.Results/Conclusions The experimental result indicates that force feedback is beneficial to an educational application,and using a haptic device can improve the effect of the application and motivate students.
基金supported by the National Natural Science Foundation of China(No.62304112)Natural Science Foundation of Jiangsu Province of China(No.BK20230359)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(No.NY221111).
文摘As a core element of human-computer interaction,haptic feedback technology has demonstrated significant value in various fields such as virtual reality,teleoperation,and healthcare.However,traditional rigid haptic feedback devices have limitations in their application scenarios due to issues such as bulkiness and poor compatibility.Flexible haptic feedback actuators,with their advantages of lightweight,compliance,and high integration,have become a key direction to break through the existing technological bottlenecks.This review systematically summarizes the material systems,actuation principles,feedback modalities,and applications of flexible haptic feedback actuators.In addition,the article discusses the future challenges and development trends in this field,including high-precision,high-resolution,multidimensional haptic sensing,and integration with cutting-edge technology.By integrating the current development progress of flexible haptic feedback actuators,this review aims to provide theoretical references and technical routes for the development of next-generation flexible haptic feedback systems,in order to promote the practical application of flexible haptic technology in complex scenarios.
基金Supported by the National High Technology Research and Development Programme of China(No.2013AA010803,2009AA01Z311,2009AA01Z314)the National Natural Science Foundation of China(No.61304205,61203316,61272379,61103086,41301037)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20141002)the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,Jiangsu Ordinary University Science Research Project(No.13KJB120007)Innovation and Entrepreneurship Training Project of College Students(No.201410300153,201410300165)the Excellent Undergraduate Paper(design)Supporting Project of NUIST
文摘To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.
基金The MOTIE(Ministry of Trade,Industry and Energy),Korea,under the Human Resources Development Program for Special Environment Navigation Localization National Robotics Research Center support program supervised by the NIPA(National IT Industry Promotion Agency)(H1502-13-1001)The MSIP(Ministry of Science,ICT&Future Planning),Korea,under the ITRC(Information Technology Research Center)support program(NIPA-2013-H0301-13-2006)supervised by the NIPA
文摘A haptic device is proposed which gives the user feedback information on their location and orientation of the obstacle through the mobile robot that detects the obstacle in an environment where the user cannot see.Mobile robot recognizes the exact position of the obstacle through configuring the nested ultrasonic sensor and giving feedback information to the haptic device.The haptic device consisting of five vibration motors can realize the haptic through the vibration of user's finger using the position information of the obstacle received feedback.In addition,it has high accuracy to recognize the surrounding environment and realizes the various situations with the fuzzy controller and the nested ultrasonic sensors.