期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multi-Modal Multi-View 3D Hand Pose Estimation
1
作者 WANG Hao WANG Ping +2 位作者 YU Haoran DING Dong XIANG Weiming 《Journal of Donghua University(English Edition)》 2025年第6期673-682,共10页
With the rapid progress of the artificial intelligence(AI)technology and mobile internet,3D hand pose estimation has become critical to various intelligent application areas,e.g.,human-computer interaction.To avoid th... With the rapid progress of the artificial intelligence(AI)technology and mobile internet,3D hand pose estimation has become critical to various intelligent application areas,e.g.,human-computer interaction.To avoid the low accuracy of single-modal estimation and the high complexity of traditional multi-modal 3D estimation,this paper proposes a novel multi-modal multi-view(MMV)3D hand pose estimation system,which introduces a registration before translation(RT)-translation before registration(TR)jointed conditional generative adversarial network(cGAN)to train a multi-modal registration network,and then employs the multi-modal feature fusion to achieve high-quality estimation,with low hardware and software costs both in data acquisition and processing.Experimental results demonstrate that the MMV system is effective and feasible in various scenarios.It is promising for the MMV system to be used in broad intelligent application areas. 展开更多
关键词 3D hand pose estimation registration network MULTI-MODAL MULTI-VIEW conditional generative adversarial network(cGAN)
在线阅读 下载PDF
3D Hand Pose Estimation Using Semantic Dynamic Hypergraph Convolutional Networks
2
作者 WU Yalei LI Jinghua +2 位作者 KONG Dehui LI Qianxing YIN Baocai 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期855-865,共11页
Due to self-occlusion and high degree of freedom,estimating 3D hand pose from a single RGB image is a great challenging problem.Graph convolutional networks(GCNs)use graphs to describe the physical connection relation... Due to self-occlusion and high degree of freedom,estimating 3D hand pose from a single RGB image is a great challenging problem.Graph convolutional networks(GCNs)use graphs to describe the physical connection relationships between hand joints and improve the accuracy of 3D hand pose regression.However,GCNs cannot effectively describe the relationships between non-adjacent hand joints.Recently,hypergraph convolutional networks(HGCNs)have received much attention as they can describe multi-dimensional relationships between nodes through hyperedges;therefore,this paper proposes a framework for 3D hand pose estimation based on HGCN,which can better extract correlated relationships between adjacent and non-adjacent hand joints.To overcome the shortcomings of predefined hypergraph structures,a kind of dynamic hypergraph convolutional network is proposed,in which hyperedges are constructed dynamically based on hand joint feature similarity.To better explore the local semantic relationships between nodes,a kind of semantic dynamic hypergraph convolution is proposed.The proposed method is evaluated on publicly available benchmark datasets.Qualitative and quantitative experimental results both show that the proposed HGCN and improved methods for 3D hand pose estimation are better than GCN,and achieve state-of-the-art performance compared with existing methods. 展开更多
关键词 hand pose estimation hypergraph convolution dynamic hypergraph convolution semantic dynamic hypergraph convolution
原文传递
Learning a Deep Predictive Coding Network for a Semi-Supervised 3D-Hand Pose Estimation 被引量:3
3
作者 Jamal Banzi Isack Bulugu Zhongfu Ye 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1371-1379,共9页
In this paper we present a CNN based approach for a real time 3 D-hand pose estimation from the depth sequence.Prior discriminative approaches have achieved remarkable success but are facing two main challenges:Firstl... In this paper we present a CNN based approach for a real time 3 D-hand pose estimation from the depth sequence.Prior discriminative approaches have achieved remarkable success but are facing two main challenges:Firstly,the methods are fully supervised hence require large numbers of annotated training data to extract the dynamic information from a hand representation.Secondly,unreliable hand detectors based on strong assumptions or a weak detector which often fail in several situations like complex environment and multiple hands.In contrast to these methods,this paper presents an approach that can be considered as semi-supervised by performing predictive coding of image sequences of hand poses in order to capture latent features underlying a given image without supervision.The hand is modelled using a novel latent tree dependency model(LDTM)which transforms internal joint location to an explicit representation.Then the modeled hand topology is integrated with the pose estimator using data dependent method to jointly learn latent variables of the posterior pose appearance and the pose configuration respectively.Finally,an unsupervised error term which is a part of the recurrent architecture ensures smooth estimations of the final pose.Experiments on three challenging public datasets,ICVL,MSRA,and NYU demonstrate the significant performance of the proposed method which is comparable or better than state-of-the-art approaches. 展开更多
关键词 Convolutional neural networks deep learning hand pose estimation human-machine interaction predictive coding recurrent neural networks unsupervised learning
在线阅读 下载PDF
Survey on depth and RGB image-based 3D hand shape and pose estimation 被引量:3
4
作者 Lin HUANG Boshen ZHANG +3 位作者 Zhilin GUO Yang XIAO Zhiguo CAO Junsong YUAN 《Virtual Reality & Intelligent Hardware》 2021年第3期207-234,共28页
The field of vision-based human hand three-dimensional(3D)shape and pose estimation has attracted significant attention recently owing to its key role in various applications,such as natural human computer interaction... The field of vision-based human hand three-dimensional(3D)shape and pose estimation has attracted significant attention recently owing to its key role in various applications,such as natural human computer interactions.With the availability of large-scale annotated hand datasets and the rapid developments of deep neural networks(DNNs),numerous DNN-based data-driven methods have been proposed for accurate and rapid hand shape and pose estimation.Nonetheless,the existence of complicated hand articulation,depth and scale ambiguities,occlusions,and finger similarity remain challenging.In this study,we present a comprehensive survey of state-of-the-art 3D hand shape and pose estimation approaches using RGB-D cameras.Related RGB-D cameras,hand datasets,and a performance analysis are also discussed to provide a holistic view of recent achievements.We also discuss the research potential of this rapidly growing field. 展开更多
关键词 hand survey 3D hand pose estimation hand shape reconstruction hand-object interactions RGB-D cameras
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部