Two new nor-ent-halimane diterpenes and three previously unreported nor-clerodane diterpenes,designated callicain-tides A-E(1-5),were isolated from Callicarpa integerrima.Compounds 1 and 2 feature a distinctive 5/6-me...Two new nor-ent-halimane diterpenes and three previously unreported nor-clerodane diterpenes,designated callicain-tides A-E(1-5),were isolated from Callicarpa integerrima.Compounds 1 and 2 feature a distinctive 5/6-membered ring system,while compounds 3-5 are characterized by progressively truncated carbon skeletons,containing 18,17,and 16 carbons,respectively.In addition,four known compounds 6-9 were also identified.Their structures were elucidated using advanced spectroscopic tech-niques,including nuclear magnetic resonance(NMR),high-resolution electrospray ionization mass spectrometry(HR-ESI-MS),ultra-violet(UV),infrared radiation(IR),optical rotatory dispersion(ORD),DP4+analysis and electronic circular dichroism(ECD),sup-ported by quantum chemical calculations.Compounds 1-9 were evaluated for their anti-MRSA activity.Among them,compound 6 demonstrated significant anti-MRSA activity,with a minimum inhibitory concentration(MIC)of 16 μg·mL^(-1).展开更多
In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb...In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb enzymes drug targets (Mtb Mycothiol S-transferase and Mtb Homoserine transacetylase) have been adopted. The pharmacological potential was investigated through molecular docking, molecular dynamics simulation, density functional theory (gas phase and water) and ADMET analysis. Our results indicate that (2R,5R,6S)-1,2,3,4,5,6,7,8-octahydro-5-((E)-5-hydroxy-3-methylpent-3-enyl)-1,1,5,6-tetramethylnaphtha-lene-2-ol (compound 20) has displays higher docking score with each of the selected drug targets. In addition, this molecule exhibits a satisfactory drug potential activity and a good chemical reactivity. Its improved kinetic stability in the Mtb Mycothiol S-transferase enzyme reflects its suitability as a novel inhibitor of Mtb growth. This molecule has displayed a good absorption potential. Our results also show that its passive passage of the intestinal permeability barrier is more effective than that of first-line treatments (ethambutol, isoniazid). In the same way, this anti-TB druglikeness has shown to be able to cross the blood brain barrier.展开更多
Three new diterpenoids,including two halimanes,5(10),13E-halimadiene-3α,15-diol(1),and 5(10),14-halimadiene-3α,13ξ-diol(2),one labdane,12-(3-methyl-furan)-labd-8(17)-en-19-oic acid(3),together with sixteen known co...Three new diterpenoids,including two halimanes,5(10),13E-halimadiene-3α,15-diol(1),and 5(10),14-halimadiene-3α,13ξ-diol(2),one labdane,12-(3-methyl-furan)-labd-8(17)-en-19-oic acid(3),together with sixteen known compounds were isolated from the barks of Dysoxylum densiflorum.All compounds were elucidated by extensive spectroscopic analysis.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22477108,82260682)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_17R94)+1 种基金the Project of Yunnan Characteristic Plant Screening and R&D Service CXO Platform(No.2022YKZY001)the Scientific Research Fund of Yunnan Provincial Department ofEducation(No.2023Y0235)。
文摘Two new nor-ent-halimane diterpenes and three previously unreported nor-clerodane diterpenes,designated callicain-tides A-E(1-5),were isolated from Callicarpa integerrima.Compounds 1 and 2 feature a distinctive 5/6-membered ring system,while compounds 3-5 are characterized by progressively truncated carbon skeletons,containing 18,17,and 16 carbons,respectively.In addition,four known compounds 6-9 were also identified.Their structures were elucidated using advanced spectroscopic tech-niques,including nuclear magnetic resonance(NMR),high-resolution electrospray ionization mass spectrometry(HR-ESI-MS),ultra-violet(UV),infrared radiation(IR),optical rotatory dispersion(ORD),DP4+analysis and electronic circular dichroism(ECD),sup-ported by quantum chemical calculations.Compounds 1-9 were evaluated for their anti-MRSA activity.Among them,compound 6 demonstrated significant anti-MRSA activity,with a minimum inhibitory concentration(MIC)of 16 μg·mL^(-1).
文摘In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb enzymes drug targets (Mtb Mycothiol S-transferase and Mtb Homoserine transacetylase) have been adopted. The pharmacological potential was investigated through molecular docking, molecular dynamics simulation, density functional theory (gas phase and water) and ADMET analysis. Our results indicate that (2R,5R,6S)-1,2,3,4,5,6,7,8-octahydro-5-((E)-5-hydroxy-3-methylpent-3-enyl)-1,1,5,6-tetramethylnaphtha-lene-2-ol (compound 20) has displays higher docking score with each of the selected drug targets. In addition, this molecule exhibits a satisfactory drug potential activity and a good chemical reactivity. Its improved kinetic stability in the Mtb Mycothiol S-transferase enzyme reflects its suitability as a novel inhibitor of Mtb growth. This molecule has displayed a good absorption potential. Our results also show that its passive passage of the intestinal permeability barrier is more effective than that of first-line treatments (ethambutol, isoniazid). In the same way, this anti-TB druglikeness has shown to be able to cross the blood brain barrier.
基金the Natural Science Foundation of China(81225024,31170334,21072198)the National Basic Research Program of China(973 Program 2009CB522300)。
文摘Three new diterpenoids,including two halimanes,5(10),13E-halimadiene-3α,15-diol(1),and 5(10),14-halimadiene-3α,13ξ-diol(2),one labdane,12-(3-methyl-furan)-labd-8(17)-en-19-oic acid(3),together with sixteen known compounds were isolated from the barks of Dysoxylum densiflorum.All compounds were elucidated by extensive spectroscopic analysis.