High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manu...High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.展开更多
To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hyb...To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.展开更多
To investigate a novel macro and micro driven linear piezoelectric motor composed of an ultrasonic motor with macro movement and a piezoelectric actuator with micro movement,a digital signal processing(DSP)based macro...To investigate a novel macro and micro driven linear piezoelectric motor composed of an ultrasonic motor with macro movement and a piezoelectric actuator with micro movement,a digital signal processing(DSP)based macro and micro power supply is designed,which fits the new linear piezoelectric motor.The power supply comprises a control circuit,a voltage conversion circuit,an amplifier circuit,a half-bridge module,an optical isolatorsdrive circuit,etc,where the DSP of TMS320F28335 is used as the controller.When the linear piezoelectric motor working in a macro driven state,the power supply outputs alternating currents with high frequency and high voltage,which drives the linear piezoelectric motor dynamically at an ultrasonic frequency;while working in the micro driven state,the power supply outputs direct currents with high voltage,which drives the linear piezoelectric motor in micro driven statically.Here a prototype of the macro-micro power supply is designed.After a series of experiments on the power supply with and without loads,the results show that the power supply can drive and control the macro micro driven linear piezoelectric motor,and realizes quick and seamless switch between macro and micro drive.In addition,the power supply can drive and control the ultrasonic motor or piezoelectric ceramic micro actuator individually.The power supply achieves the multiple parameters of output signals adjustable simultaneously and exhibits good control characteristics.展开更多
This paper proposes a star type multiport hybrid circuit breaker(Star-HCB)topology for protection of multiterminal DC transmission.Reliability and stability of high voltage DC(HVDC)grids are determined by their capabi...This paper proposes a star type multiport hybrid circuit breaker(Star-HCB)topology for protection of multiterminal DC transmission.Reliability and stability of high voltage DC(HVDC)grids are determined by their capabilities to withstand DC-side faults.In order to maintain reliability of HVDC grids,both ends of each line should be equipped with hybrid circuit breakers(HCB).This method will increase expenditure of the HVDC,especially the meshed topology.The n-port Star-HCB consists of ultra-fast mechanical disconnectors,load current switch and only one transferring branch which is formed by improved half-bridge sub-module.Compared with existing traditional hybrid circuit breakers and other multiport hybrid circuit breakers,the proposed topology can realize the same short-circuit blocking goal using fewer components.Detailed mathematical transient process calculation and timedomain simulation of the proposed Star-HCB are given to verify its superiority.展开更多
文摘High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.
基金supported by Science and Technology Project of the headquarters of the State Grid Corporation of China(No.5500-202324492A-3-2-ZN).
文摘To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.
基金supported by the National Natural Science Foundation of China(No.51177053)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.2012CXZD0016)+1 种基金the Key Project of Department of Education of Guangdong Province(No.20124404110003)Guangzhou Science and Technology Project(No.201510010227)
文摘To investigate a novel macro and micro driven linear piezoelectric motor composed of an ultrasonic motor with macro movement and a piezoelectric actuator with micro movement,a digital signal processing(DSP)based macro and micro power supply is designed,which fits the new linear piezoelectric motor.The power supply comprises a control circuit,a voltage conversion circuit,an amplifier circuit,a half-bridge module,an optical isolatorsdrive circuit,etc,where the DSP of TMS320F28335 is used as the controller.When the linear piezoelectric motor working in a macro driven state,the power supply outputs alternating currents with high frequency and high voltage,which drives the linear piezoelectric motor dynamically at an ultrasonic frequency;while working in the micro driven state,the power supply outputs direct currents with high voltage,which drives the linear piezoelectric motor in micro driven statically.Here a prototype of the macro-micro power supply is designed.After a series of experiments on the power supply with and without loads,the results show that the power supply can drive and control the macro micro driven linear piezoelectric motor,and realizes quick and seamless switch between macro and micro drive.In addition,the power supply can drive and control the ultrasonic motor or piezoelectric ceramic micro actuator individually.The power supply achieves the multiple parameters of output signals adjustable simultaneously and exhibits good control characteristics.
基金supported by the Institute of Electrical Engineering,CAS under grant(E155610101,E155610201 and E155610301).
文摘This paper proposes a star type multiport hybrid circuit breaker(Star-HCB)topology for protection of multiterminal DC transmission.Reliability and stability of high voltage DC(HVDC)grids are determined by their capabilities to withstand DC-side faults.In order to maintain reliability of HVDC grids,both ends of each line should be equipped with hybrid circuit breakers(HCB).This method will increase expenditure of the HVDC,especially the meshed topology.The n-port Star-HCB consists of ultra-fast mechanical disconnectors,load current switch and only one transferring branch which is formed by improved half-bridge sub-module.Compared with existing traditional hybrid circuit breakers and other multiport hybrid circuit breakers,the proposed topology can realize the same short-circuit blocking goal using fewer components.Detailed mathematical transient process calculation and timedomain simulation of the proposed Star-HCB are given to verify its superiority.