The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the sec...The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.展开更多
In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the h...In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the half space as well as the half plane problems.展开更多
A closed form solution to the second order elasticity problem ,when an isotropiccompressible elastic half-space undergoes a deformation owing to a non-uniformlydistributed normal load,is presented,The method of integr...A closed form solution to the second order elasticity problem ,when an isotropiccompressible elastic half-space undergoes a deformation owing to a non-uniformlydistributed normal load,is presented,The method of integral transform is employedand the case when loading is distributed,in accordance with Hertz'x law ,is discussed.The limiting solution for incompressible isotropic elastic material is also derived.Numerical calculations for the second order elastic material for the displacement and the normal stress in the z-direction are carried out .It is found that,in comparison to the linear elastic case,the displacement increases and the normal stress decreases in the second order elastic material.展开更多
We present in this paper a numerical method for hypersingular boundary integral equations. This method was developed for planar crack problems: additional edge singularities are known to develop in that case. This pa...We present in this paper a numerical method for hypersingular boundary integral equations. This method was developed for planar crack problems: additional edge singularities are known to develop in that case. This paper includes a rigorous error analysis proving the convergence of our numerical scheme. Three types of examples are covered: the Laplace equation in free space, the linear elasticity equation in free space, and in half space.展开更多
基金theResearchFoundationofEducationalCommitteeofYunnanProvince China
文摘The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.
文摘In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the half space as well as the half plane problems.
文摘A closed form solution to the second order elasticity problem ,when an isotropiccompressible elastic half-space undergoes a deformation owing to a non-uniformlydistributed normal load,is presented,The method of integral transform is employedand the case when loading is distributed,in accordance with Hertz'x law ,is discussed.The limiting solution for incompressible isotropic elastic material is also derived.Numerical calculations for the second order elastic material for the displacement and the normal stress in the z-direction are carried out .It is found that,in comparison to the linear elastic case,the displacement increases and the normal stress decreases in the second order elastic material.
文摘We present in this paper a numerical method for hypersingular boundary integral equations. This method was developed for planar crack problems: additional edge singularities are known to develop in that case. This paper includes a rigorous error analysis proving the convergence of our numerical scheme. Three types of examples are covered: the Laplace equation in free space, the linear elasticity equation in free space, and in half space.
基金Open Topic of State Key Laboratory for Superlattices and Microstructures(CHJG200902)Scientific Research Project in Shaanxi Province(2009K01-54)Foundation of Shanxi University of Technology(SLGKY10-02)~~