Habitable Trinity is a newly proposed concept of a habitable environment. This concept indicates that the coexistence of an atmosphere (consisting largely of C and N), an ocean (H and 0), and a landmass (supplier...Habitable Trinity is a newly proposed concept of a habitable environment. This concept indicates that the coexistence of an atmosphere (consisting largely of C and N), an ocean (H and 0), and a landmass (supplier of nutrients) accompanying continuous material circulation between these three components driven by the Sun is one of the minimum requirements for life to emerge and evolve. The life body consists of C, O, H, N and other various nutrients, and therefore, the presence of water, only, is not a sufficient condition. Habitable Trinity environment must he maintained to supply necessary components for life body. Our Habitable Trinity concept can also be applied to other planets and moons such as Mars, Europa, Titan, and even exoplanets as a useful index in the quest for life-containing planetary bodies.展开更多
The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant...The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant geological record,both lunar and Martian surface geology suggest that anorthosite may have comprised a primordial continent on the early Earth during the first 600 million years after its formation. We hypothesized that differences in the presence of an anorthositic continent on an Earthlike planet are due to planetary size. Earth likely lost its primordial anorthositic continent by tectonic erosion through subduction associated with a kind of proto-plate tectonics(PPT). In contrast, Mars and the Moon, as much smaller planetary bodies, did not lose much of their anorthositic continental crust because mantle convection had weakened and/or largely stopped, and with time, they had appropriately cooled down. Applying this same reasoning to a super-Earth exoplanet suggests that, while a primordial anorthositic continent may briefly form on its surface, such a continent will be likely transported into the deep mantle due to intense mantle convection immediately following its formation. The presence of a primordial continent on an Earth-like planet seems to be essential to whether the planet will be habitable to Earth-like life. The key role of the primordial continent is to provide the necessary and sufficient nutrients for the emergence and evolution of life. With the appearance of a "trinity" consisting of(1) an atmosphere,(2) an ocean, and(3) the primordial continental landmass, material circulation can be maintained to enable a "Habitable Trinity" environment that will permit the emergence of Earth-like life. Thus, with little likelihood of a persistent primordial continent, a super-Earth affords very little chance for Earth-like life to emerge.展开更多
The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at...The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at 4.37-4.20 Ga.This two-step formation model of the Earth we refer to as the advent of bio-elements model(ABEL Model) and the event of the advent of bio-elements(water component) as ABEL Bombardment.It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes.On the other hand,Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio.We present our ABEL model to explain this enigma between solid Earth and water,as well as secondary accretion of oxidizing bio-elements,which became a precursor to initiate metabolism to emerge life on a highly reductive planet.If ABEL Bombardment had not occurred,life never would have emerged on the Earth.Therefore,ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet.The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model.ABEL Bombardment is considered to have occurred during 4.37-4.20 Ga,which is the concept to redefine the standard late heavy bombardment and the late veneer models.Also,ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.展开更多
基金funded through the Earth-Life Science Institute (ELSI)
文摘Habitable Trinity is a newly proposed concept of a habitable environment. This concept indicates that the coexistence of an atmosphere (consisting largely of C and N), an ocean (H and 0), and a landmass (supplier of nutrients) accompanying continuous material circulation between these three components driven by the Sun is one of the minimum requirements for life to emerge and evolve. The life body consists of C, O, H, N and other various nutrients, and therefore, the presence of water, only, is not a sufficient condition. Habitable Trinity environment must he maintained to supply necessary components for life body. Our Habitable Trinity concept can also be applied to other planets and moons such as Mars, Europa, Titan, and even exoplanets as a useful index in the quest for life-containing planetary bodies.
基金supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research on Innovative Areas), Grant Number 26106002(Hadean Bio Science)the Tokyo Dome Corporation for support of the TeNQ exhibitthe branch of Space Exploration Education & Discovery, the University Museum
文摘The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant geological record,both lunar and Martian surface geology suggest that anorthosite may have comprised a primordial continent on the early Earth during the first 600 million years after its formation. We hypothesized that differences in the presence of an anorthositic continent on an Earthlike planet are due to planetary size. Earth likely lost its primordial anorthositic continent by tectonic erosion through subduction associated with a kind of proto-plate tectonics(PPT). In contrast, Mars and the Moon, as much smaller planetary bodies, did not lose much of their anorthositic continental crust because mantle convection had weakened and/or largely stopped, and with time, they had appropriately cooled down. Applying this same reasoning to a super-Earth exoplanet suggests that, while a primordial anorthositic continent may briefly form on its surface, such a continent will be likely transported into the deep mantle due to intense mantle convection immediately following its formation. The presence of a primordial continent on an Earth-like planet seems to be essential to whether the planet will be habitable to Earth-like life. The key role of the primordial continent is to provide the necessary and sufficient nutrients for the emergence and evolution of life. With the appearance of a "trinity" consisting of(1) an atmosphere,(2) an ocean, and(3) the primordial continental landmass, material circulation can be maintained to enable a "Habitable Trinity" environment that will permit the emergence of Earth-like life. Thus, with little likelihood of a persistent primordial continent, a super-Earth affords very little chance for Earth-like life to emerge.
基金supported by Grant-in-Aid for Scientific Research on Innovative Areas(Grant Nos.26106002 and 26106006)
文摘The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at 4.37-4.20 Ga.This two-step formation model of the Earth we refer to as the advent of bio-elements model(ABEL Model) and the event of the advent of bio-elements(water component) as ABEL Bombardment.It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes.On the other hand,Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio.We present our ABEL model to explain this enigma between solid Earth and water,as well as secondary accretion of oxidizing bio-elements,which became a precursor to initiate metabolism to emerge life on a highly reductive planet.If ABEL Bombardment had not occurred,life never would have emerged on the Earth.Therefore,ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet.The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model.ABEL Bombardment is considered to have occurred during 4.37-4.20 Ga,which is the concept to redefine the standard late heavy bombardment and the late veneer models.Also,ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.