本文利用高阶Haar小波方法求解具有不同边界条件的五阶微分方程。对线性微分方程,使用高阶Haar小波配置法,将微分方程转化为线性代数方程组求解;对于非线性微分方程,则使用拟线性化方法将其转化为线性微分方程后求解。通过计算方程组系...本文利用高阶Haar小波方法求解具有不同边界条件的五阶微分方程。对线性微分方程,使用高阶Haar小波配置法,将微分方程转化为线性代数方程组求解;对于非线性微分方程,则使用拟线性化方法将其转化为线性微分方程后求解。通过计算方程组系数矩阵的条件数,判断出方法的稳定性。数值实验表明,高阶Haar小波方法比经典的Haar小波方法有着更高的数值精度,可以用更少的配置点获得更小的误差,并且增加尺度误差下降得更快,通过求解最大绝对误差和均方根误差,得到了高阶Haar小波方法具有四阶精度的结论,数值计算结果与其他方法进行了比较。This paper utilizes the high-order Haar wavelet method to solve fifth-order differential equations with different boundary conditions. For linear differential equations, the high-order Haar wavelet collocation method is employed to transform the differential equation into a system of linear algebraic equations for solution. For nonlinear differential equations, the quasi-linearization method is used to convert them into linear differential equations before solving. The stability of the method is determined by calculating the condition number of the coefficient matrix of the equation system. Numerical experiments show that the high-order Haar wavelet method has higher numerical accuracy than the classical Haar wavelet method, achieving smaller errors with fewer collocation points. Moreover, as the scale increases, the error decreases more rapidly. By solving the maximum absolute error and the root mean square error, it is concluded that the high-order Haar wavelet method has a fourth-order accuracy. The numerical results are compared with those of other methods.展开更多
This research explores the dynamic behaviour of horn-shaped single-walled carbon nanotubes(HS-SWCNTs)conveying viscous nanofluid with pulsating the influence of a longitudinal magnetic field.The analysis utilizes Eule...This research explores the dynamic behaviour of horn-shaped single-walled carbon nanotubes(HS-SWCNTs)conveying viscous nanofluid with pulsating the influence of a longitudinal magnetic field.The analysis utilizes Euler-Bernoulli beam model,considering the variable cross section,and incorporating Eringen’s nonlocal theory to formulate the governing partial differential equation of motion.The instability domain of HS-SWCNTs is estimated using Galerkin’s approach.Numerical analysis is performed using the Haar wavelet method.The critical buckling load obtained in this study is compared with previous research to validate the proposed model.The results highlight the effectiveness of the proposed model in assessing the vibrational characteristics of a complex multi-physics system involving HS-SWCNTs.Dispersion graphs and tables are presented to visualize the numerical findings pertaining to various system parameters,including the nonlocal parameter,magnetic flux,Knudsen number,and viscous factor.展开更多
基于正交Haar变换(orthogonal Haar transform,OHT)的模板匹配算法在处理二维图像时采用条形和来替代积分图,从而获得了较高的运行效率,但它要求模板必须是标准大小的,即模板的高和宽必须相等且为2的幂次.为解决OHT算法的这一问题,提出...基于正交Haar变换(orthogonal Haar transform,OHT)的模板匹配算法在处理二维图像时采用条形和来替代积分图,从而获得了较高的运行效率,但它要求模板必须是标准大小的,即模板的高和宽必须相等且为2的幂次.为解决OHT算法的这一问题,提出了另一种基于拟Haar变换(quasi Haar transform,QHT)的模板匹配算法,它使用树分解策略来加速非标准模板时的匹配处理.QHT算法不仅能处理非标准模板的情况,也同样能处理标准模板的情况.在标准模板情况下,实验结果表明,QHT算法在低噪声等级时比OHT算法拥有更快的运行速度.展开更多
文摘本文利用高阶Haar小波方法求解具有不同边界条件的五阶微分方程。对线性微分方程,使用高阶Haar小波配置法,将微分方程转化为线性代数方程组求解;对于非线性微分方程,则使用拟线性化方法将其转化为线性微分方程后求解。通过计算方程组系数矩阵的条件数,判断出方法的稳定性。数值实验表明,高阶Haar小波方法比经典的Haar小波方法有着更高的数值精度,可以用更少的配置点获得更小的误差,并且增加尺度误差下降得更快,通过求解最大绝对误差和均方根误差,得到了高阶Haar小波方法具有四阶精度的结论,数值计算结果与其他方法进行了比较。This paper utilizes the high-order Haar wavelet method to solve fifth-order differential equations with different boundary conditions. For linear differential equations, the high-order Haar wavelet collocation method is employed to transform the differential equation into a system of linear algebraic equations for solution. For nonlinear differential equations, the quasi-linearization method is used to convert them into linear differential equations before solving. The stability of the method is determined by calculating the condition number of the coefficient matrix of the equation system. Numerical experiments show that the high-order Haar wavelet method has higher numerical accuracy than the classical Haar wavelet method, achieving smaller errors with fewer collocation points. Moreover, as the scale increases, the error decreases more rapidly. By solving the maximum absolute error and the root mean square error, it is concluded that the high-order Haar wavelet method has a fourth-order accuracy. The numerical results are compared with those of other methods.
文摘This research explores the dynamic behaviour of horn-shaped single-walled carbon nanotubes(HS-SWCNTs)conveying viscous nanofluid with pulsating the influence of a longitudinal magnetic field.The analysis utilizes Euler-Bernoulli beam model,considering the variable cross section,and incorporating Eringen’s nonlocal theory to formulate the governing partial differential equation of motion.The instability domain of HS-SWCNTs is estimated using Galerkin’s approach.Numerical analysis is performed using the Haar wavelet method.The critical buckling load obtained in this study is compared with previous research to validate the proposed model.The results highlight the effectiveness of the proposed model in assessing the vibrational characteristics of a complex multi-physics system involving HS-SWCNTs.Dispersion graphs and tables are presented to visualize the numerical findings pertaining to various system parameters,including the nonlocal parameter,magnetic flux,Knudsen number,and viscous factor.
文摘基于正交Haar变换(orthogonal Haar transform,OHT)的模板匹配算法在处理二维图像时采用条形和来替代积分图,从而获得了较高的运行效率,但它要求模板必须是标准大小的,即模板的高和宽必须相等且为2的幂次.为解决OHT算法的这一问题,提出了另一种基于拟Haar变换(quasi Haar transform,QHT)的模板匹配算法,它使用树分解策略来加速非标准模板时的匹配处理.QHT算法不仅能处理非标准模板的情况,也同样能处理标准模板的情况.在标准模板情况下,实验结果表明,QHT算法在低噪声等级时比OHT算法拥有更快的运行速度.