期刊文献+
共找到158篇文章
< 1 2 8 >
每页显示 20 50 100
Isolated FeN_(3)sites anchored hierarchical porous carbon nanoboxes for hydrazine-assisted rechargeable Zn-CO_(2)batteries with ultralow charge voltage
1
作者 Sanshuang Gao Hongyi Li +5 位作者 Zhansheng Lu Songjie Meng Xue Zhao Xinzhong Wang Xijun Liu Guangzhi Hu 《Carbon Energy》 2025年第1期121-132,共12页
Zn-CO_(2)batteries(ZCBs)are promising for CO_(2)conversion and electric energy release.However,the ZCBs couple the electrochemical CO_(2)reduction(ECO_(2)R)with the oxygen evolution reaction and competitive hydrogen e... Zn-CO_(2)batteries(ZCBs)are promising for CO_(2)conversion and electric energy release.However,the ZCBs couple the electrochemical CO_(2)reduction(ECO_(2)R)with the oxygen evolution reaction and competitive hydrogen evolution reaction,which normally causes ultrahigh charge voltage and CO_(2)conversion efficiency attenuation,thereby resulting in~90%total power consumption.Herein,isolated FeN_(3)sites encapsulated in hierarchical porous carbon nanoboxes(Fe-HPCN,derived from the thermal activation process of ferrocene and polydopamine-coated cubic ZIF-8)were proposed for hydrazine-assisted rechargeable ZCBs based on ECO_(2)R(discharging process:CO_(2)+2H+→CO+H_(2)O)and hydrazine oxidation reaction(HzOR,charging process:N_(2)H_(4)+4OH−→N_(2)+4H_(2)O+4e^(−)).The isolated FeN_(3)endows the HzOR with a lower overpotential and boosts the ECO_(2)R with a 96%CO Faraday efficiency(FECO).Benefitting from the bifunctional ECO_(2)R and HzOR catalytic activities,the homemade hydrazine-assisted rechargeable ZCBs assembled with the Fe-HPCN air cathode exhibited an ultralow charge voltage(decreasing by~1.84 V),excellent CO selectivity(FECO close to 100%),and high 89%energy efficiency.In situ infrared spectroscopy confirmed that Fe-HPCN can generate rate-determining*N_(2)and*CO intermediates during HzOR and ECO_(2)R.This paper proposes FeN_(3)centers for bifunctional ECO_(2)R/HzOR performance and further presents the pioneering achievements of ECO_(2)R and HzOR for hydrazine-assisted rechargeable ZCBs. 展开更多
关键词 electrochemical CO_(2)reduction Fe single atoms hierarchical porous carbon nanoboxes hydrazine-assisted Zn-CO_(2)batteries hydrazine oxidation reaction
在线阅读 下载PDF
Amorphous ruthenium nanosheets for efficient hydrazine-assisted water splitting
2
作者 Jiachuan He Haoran Wang +6 位作者 Chen Ling Yi Shi Haohui Hu Qi Jin Shi Zhang Geng Wu Xun Hong 《中国科学技术大学学报》 北大核心 2025年第3期12-18,11,I0001,共9页
The hydrazine oxidation reaction(HzOR)has garnered significant attention as a feasible approach to replace sluggish anodic reactions to save energy.Nevertheless,there are still difficulties in developing highly effici... The hydrazine oxidation reaction(HzOR)has garnered significant attention as a feasible approach to replace sluggish anodic reactions to save energy.Nevertheless,there are still difficulties in developing highly efficient catalysts for the HzOR.Herein,we report amorphous ruthenium nanosheets(a-Ru NSs)with a thickness of approximately 9.6 nm.As a superior bifunctional electrocatalyst,a-Ru NSs exhibited enhanced electrocatalytic performance toward both the HzOR and hydrogen evolution reaction(HER),outperforming benchmark Pt/C catalysts,where the a-Ru NSs achieved a work-ing potential of merely-76 mV and a low overpotential of only 17 mV to attain a current density of 10 mA·cm^(-2) for the HzOR and HER,respectively.Furthermore,a-Ru NSs displayed a low cell voltage of 28 mV at 10 mA·cm^(-2) for overall hy-drazine splitting in a two-electrode electrolyzer.In situ Raman spectra revealed that the a-Ru NSs can efficiently promote N‒N bond cleavage,thereby producing more*NH_(2)and accelerating the progress of the reaction. 展开更多
关键词 amorphous structure Ru nanosheets hydrogen evolution reaction hydrazine oxidation reaction *NH_(2)adsorp-tion
在线阅读 下载PDF
Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate
3
作者 Chunhui Zhang Jie Wang +6 位作者 Jieyang Zhan Runmin Yang Guanggang Gao Jiayuan Zhang Linlin Fan Mengqi Wang Hong Liu 《Chinese Chemical Letters》 2025年第3期581-586,共6页
In the field of Raman spectroscopy detection,the quest for a non–noble metal,recyclable,and highly sensitive detection substrate is of utmost importance.In this work,a new crystalline and noble metal–free substrate ... In the field of Raman spectroscopy detection,the quest for a non–noble metal,recyclable,and highly sensitive detection substrate is of utmost importance.In this work,a new crystalline and noble metal–free substrate of[Bi(DMF)_(8)][PMo_(12)O_(40)](Bi–PMo_(12))is designed,which is composed of[PMo_(12)O_(40)]^(3−)and solvated[Bi(DMF)_(8)]^(3+)cations.Mechanistic studies have revealed that Raman scattering quenching phenomenon arises from two main factors.Firstly,it arises from the absorption of the scattered light due to the transition of a single electron in the reduced state of MoV between 4d orbitals.Secondly,after the interaction between the substrate and hydrazine,the surface undergoes varying degrees of roughening,leading to an impact on the scattered light intensity.These two effects collectively contribute to the detection of low concentrations of N_(2)H_(4).As a result,Bi–PMo_(12)opens up a novel Raman scattering quenching mechanism to realize the detection of reduced N_(2)H_(4)small molecules.A remarkably low detection limit of 4.5×10^(−9)ppm for N_(2)H_(4)is achieved on the Bi–PMo_(12)substrate.This detection has a lower concentration than the currently known SERS detection of N_(2)H_(4).Moreover,Bi–PMo_(12)can be recovered and reused through recrystallization,achieving a recovery rate of up to ca.51%.This study reveals the underlying potential of crystalline polyoxometalate materials in the field of Raman detection,thus opening up new avenues for highly sensitive analysis using Raman techniques. 展开更多
关键词 POLYOXOMETALATE hydrazine Raman detection QUENCHING Single crystal
原文传递
Ru nanoclusters immobilized in N-doped porous carbon for efficient hydrazine-assisted hydrogen production and Zn-hydrazine
4
作者 Jun-Lin Huang Hao Zhang +6 位作者 Tian-Yi Suo Joao Cunha Zhi-Peng Yu Wen-Yuan Xu Liang Chen Zhao-Hui Hou Hong Yin 《Rare Metals》 2025年第4期2502-2512,共11页
Hydrazine-assisted water electrolysis presents a promising and efficient hydrogen production technology.However,developing high-performance hydrazine oxidation reaction(HzOR)and hydrogen evolution reaction(HER)bifunct... Hydrazine-assisted water electrolysis presents a promising and efficient hydrogen production technology.However,developing high-performance hydrazine oxidation reaction(HzOR)and hydrogen evolution reaction(HER)bifunctional catalysts remains challenging.Here,we report a bifunctional electrocatalyst of Ru NCs@NPC,embedding the ultrafine Ru nanoclusters into N-doped porous carbon via microwave reduction.Due to the ultrafine Ru nanoclusters and N doping,the composite exhibits exceptional activity for both HER and HzOR,requiring−55 and−67 mV to reach 10 mA·cm^(−2) in alkaline media.In the overall hydrazine splitting(OHzS)system,Ru NCs@NPC is used as both anode and cathode materials,achieving 10 mA·cm^(−2) only at 0.036 V.The zinc hydrazine(Zn-Hz)battery assembled with Ru NCs@NPC cathode and Zn foil anode can provide a stable voltage of 0.4 V and exhibit 98.5%energy efficiency.Therefore,integrating Zn-Hz battery with OHzS system enables self-powered H_(2) evolution.The density function theory calculations reveal that the Ru-N bond increases the metal-support interaction. 展开更多
关键词 Ru nanoclusters Metal-support interaction Hydrogen evolution hydrazine oxidation Zn-Hz battery
原文传递
Constructing urchin-like TiO_(2) integrated NiPt nanoparticles for boosting the decomposition of hydrazine hydrate
5
作者 Shu-Yu Liu Wen-Ting Ren +7 位作者 Lei-Yun Chen Jing Xie Chao Wan Li-Xin Xu Sheng-Lai Li Jia-Pei Wang Pavel S.Postnikov Dang-Guo Cheng 《Rare Metals》 2025年第9期6331-6342,共12页
Chemical hydrogen storage technology is crucial for the widespread use of hydrogen,with significant research progress being made in hydrazine hydrate(N_(2)H_(4)·H_(2)O).However,the efficient decomposition of N_(2... Chemical hydrogen storage technology is crucial for the widespread use of hydrogen,with significant research progress being made in hydrazine hydrate(N_(2)H_(4)·H_(2)O).However,the efficient decomposition of N_(2)H_(4)·H_(2)O remains a major challenge,hindered by dynamic constraints.To address this,we prepared NiPt nanoparticles deposited onto urchin-like TiO_(2)(u-TiO_(2))using the impregnation-reduction method,resulting in the NiPt/u-TiO_(2)catalyst.Remarkably,the Ni0.5Pt0.5/u-TiO_(2)catalyst demonstrated 100%H_(2)selectivity,ultrahigh catalytic activity and remarkable durability for N_(2)H_(4)·H_(2)O dehydrogenation,with a turnover frequency(TOF)of115.8 min^(-1),surpassing that of the corresponding NiPt/commercial TiO_(2)(c-TiO_(2)).Characterization and experimental findings suggest that the remarkable activity may originate from the unique urchin-like structure of the catalyst,along with the synergistic interaction between NiPt metals and the support.This research opens new avenues for designing nanomaterials with morphology advantages for hydrogen evolution reaction. 展开更多
关键词 HYDROGEN hydrazine hydrate Hydrogen storage materials NiPt catalyst Urchin-like TiO_(2)
原文传递
Sea urchin-like NiPt/TiCeO_(2)catalyst for rapid and efficient hydrogen production from hydrous hydrazine
6
作者 Wenting Ren Shuyu Liu +6 位作者 Yan Wang Jing Xie Chao Wan Lixin Xu Shenglai Li Jiapei Wang Pavel S.Postnikov 《Journal of Rare Earths》 2025年第8期1668-1676,I0003,共10页
Controllable hydrogen production via the catalytic decomposition of hydrous hydrazine(N_(2)H_(4)·H_(2)O)holds significant promise for mobile and portable applications.However,current catalysts suffer from unsatis... Controllable hydrogen production via the catalytic decomposition of hydrous hydrazine(N_(2)H_(4)·H_(2)O)holds significant promise for mobile and portable applications.However,current catalysts suffer from unsatisfactory reaction activity and hydrogen(H2)selectivity.Based on the unique redox properties of CeO_(2),this article aims to enhance the thermal catalytic performance for the decomposition of N_(2)H_(4)·H_(2)O by improving metal-support interactions between the TiCeO_(2)and NiPt active components.Meanwhile,the sea urchin-like TiCeO_(2)support,which is more conducive to the dispersion of the NiPt nanoparticles and provides more reactive sites for the reaction,was used to immobilize Ni-Pt into the NixPt1-x/TiCeO_(2)sample using the impregnation-reduction method.By modulating Ce doping and the Ni-Pt molar ratio,samples with different Ni-Pt compositions were synthesized.The optimal Ni0.5Pt0.5/TiCeO_(2)(nNi:nPt=1)shows the highest catalytic performance compared with the other samples,with a TOF(turnover frequency)of 212.58 min-1and 100%hydrogen selectivity at 323 K.Furthermore,the hydrogen selectivity remains 100%after six cycles.This remarkable activity and stability provide valuable insights and encouragement for accelerating the practical application of N_(2)H_(4)·H_(2)O as a viable hydrogen carrier. 展开更多
关键词 Hydrous hydrazine Hydrogen production Decomposition Nickel-platinum bi-metal catalyst Rare earths
原文传递
Heterointerface of nickel-ferric hydroxide/cobalt-phosphide-boride boosting hydrazine-assisted water electrolysis
7
作者 Jiayi Wang Shaojun Qing +4 位作者 Xili Tong Ting Xiang Guangnan Luo Kun Zhang Liangji Xu 《Green Energy & Environment》 2025年第10期1957-1967,共11页
Sustainable H_(2) production based on hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) has attracted wide attention due to minimal energy consumption compared to overall water electrolysis.The... Sustainable H_(2) production based on hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) has attracted wide attention due to minimal energy consumption compared to overall water electrolysis.The present study focuses on the design and construction of heterostructured CoPB@NiFe-OH applied as efficient bifunctional catalysts to sustainably produce hydrogen and remove hydrazine in alkaline media.Impressively,CoPB@NiFe-OH heterointerface exhibits an HzOR potential of-135 mV at the current density of 10 mA cm^(2) when the P to B atom ratio was 0.2,simultaneously an HER potential of-32 mV toward HER when the atom ratio of P and B was 0.5.Thus,hydrogen production without an outer voltage accompanied by a small current density output of 25 mA cm^(2) is achieved,surpassing most reported catalysts.In addition,DFT calculations demonstrate the Co sites in CoPB upgrades H*adsorption,while the Ni sites in NiFe-OH optimizes the adsorption energy of N_(2)H_(4)*due to electron transfer from CoPB to NiFe-OH at the heterointerface,ultimately leading to exceptional performance in hydrazine-assistant water electrolysis via HER coupled with HzOR. 展开更多
关键词 hydrazine oxidation Hydrogen production CoPB@NiFe-OH HETEROINTERFACE
在线阅读 下载PDF
Reductive acid leaching of cadmium from zinc neutral leaching residue using hydrazine sulfate 被引量:5
8
作者 张纯 闵小波 +3 位作者 张建强 王密 周波生 沈忱 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4175-4182,共8页
Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environme... Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environment. The ZNLR contained approximately 35.99% Zn, 15.93% Fe and 0.26% Cd, and Cd mainly existed as ferrites in the ZNLR in this research. Reductive acid leaching of ZNLR was investigated. The effects of hydrazine sulfate concentration, initial sulfuric acid concentration, temperature, duration and liquid-to-solid ratio on the extraction of Cd, Zn and Fe were examined. The extraction efficiencies of Cd, Zn and Fe reached 90.81%, 95.83% and 94.19%, respectively when the leaching parameters were fixed as follows: hydrazine sulfate concentration, 33.3 g/L; sulfuric acid concentration, 80 g/L; temperature, 95 °C; duration of leaching, 120 min; liquid-to-solid ratio, 10 m L/g and agitation, 400 r/min. XRD and SEM-EDS analyses of the leaching residue confirmed that lead sulfate(Pb SO4) and hydrazinium zinc sulfate((N2H5)2Zn(SO4)2) were the main phases remaining in the reductive leaching residue. 展开更多
关键词 reductive acid leaching zinc neutral leaching residue hydrazine sulfate CADMIUM
在线阅读 下载PDF
Y_(2)O_(3)-functionalized graphene-immobilized Ni–Pt nanoparticles for enhanced hydrous hydrazine and hydrazine borane dehydrogenation 被引量:4
9
作者 Qi-Lu Yao Meng He +2 位作者 Ya-Ru Kong Tian Gui Zhang-Hui Lu 《Rare Metals》 SCIE EI CAS CSCD 2023年第10期3410-3419,共10页
Developing efficient and highly selective catalyst to promote hydrogen generation from hydrous hydrazine(N_(2)H_(4)·H_(2)O) and hydrazine borane(N_(2)H_(4)BH_(3))remains a challenging issue for fuel cell-based hy... Developing efficient and highly selective catalyst to promote hydrogen generation from hydrous hydrazine(N_(2)H_(4)·H_(2)O) and hydrazine borane(N_(2)H_(4)BH_(3))remains a challenging issue for fuel cell-based hydrogen economy.In this work,ultrafine and well-dispersed bimetallic NiPt nanoparticles(3.4 nm) were successfully immobilized on Y_(2)O_(3)-functionalized graphene(Y_(2)O_(3)/rGO) without any surfactant by a simple liquid impregnation approach.It is firstly found that integration of graphene and Y_(2)O_(3) not only can facilitate the formation of ultrafine NiPt nanoparticles(NPs),but also can effectively modulate the electronic structure of NiPt NPs,thereby boosting the catalytic performance.Compared with NiPt/Y_(2)O_(3) and NiPt/rGO,the NiPt/Y_(2)O_(3)/rGO nanocomposites(NCs) show remarkable enhanced catalytic efficiency for hydrogen production from N_(2)H_(4)-H_(2)O.In particular,the optimized Ni_(0.6)Pt_(0.4/)Y_(2)O_(3)/rGO NCs display the best catalytic efficiency and 100% H_(2) selectivity for N_(2)H_(4)-H_(2)O dehydrogenation,providing a turnover frequency(TOF) of2182 h^(-1) at 323 K,which is among the highest values ever reported.Moreover,the Ni_(0.6)Pt_(0.4)/Y_(2)O_(3)/rGO NCs also exhibit an excellent catalytic performance(TOF=3191 h^(-1)) and 100% H_(2) selectively for N_(2)H_(4)BH_(3)dehydrogenation at 323 K.The outstanding catalytic results obtained provide more possibilities for the potential applications of N_(2)H_(4)·H_(2)O and N_(2)H_(4)BH_(3) as promising chemical hydrogen storage materials. 展开更多
关键词 Hydrous hydrazine(N_(2)H_(4)·H_(2)O) hydrazine borane(N_(2)H_(4)BH_(3)) DEHYDROGENATION GRAPHENE Catalysis
原文传递
Ligand-free monophasic CuPd alloys endow boosted reaction kinetics toward energy-efficient hydrogen fuel production paired with hydrazine oxidation 被引量:2
10
作者 Yujeong Jeong Shreyanka Shankar Naik +5 位作者 Yiseul Yu Jayaraman Theerthagiri Seung Jun Lee Pau Loke Show Hyun Chul Choi Myong Yong Choi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第12期20-29,共10页
Optimizing the structure and components is a prevalent strategy for increasing electrocatalytic energy-saving H 2 fuel production.One of the sustainable and efficient techniques is electrocatalytic water split-ting fo... Optimizing the structure and components is a prevalent strategy for increasing electrocatalytic energy-saving H 2 fuel production.One of the sustainable and efficient techniques is electrocatalytic water split-ting for H 2 generation,but it is still restricted by the kinetically sluggish OER.Due to the lower standard oxidation potential of−0.33 V,replacing the OER with anodic hydrazine oxidation reaction(HzOR)is an effective way to extensively reduce the use of electricity in water electrolysis.Through alloying,the semiconductor and adsorption characteristics of Cu,interlaced by Pd 2+solution on the Pd surface by pulsed laser ablation(PLA)in methanol,are selectively altered to maximize cathodic HER and anodic HzOR performance.The optimal Cu1Pd3/C ratio demonstrates outstanding HER performance with a low overpotential of 0.315 V at 10 mA cm^(−2),as well as an ultralow overpotential of 0.560 V for HzOR in 0.5 M N_(2) H_(4)/1.0 M KOH.Furthermore,the constructed HzOR-assisted electrolyzer cell with Cu1Pd3/C||Cu1Pd3/C as anode and cathode exhibits a cell voltage of 0.505 V at 10 mA cm^(−2) with exceptional en-durance over 5 h.The current study advances competent CuPd alloys as multifunctional electrocatalysts for H 2 fuel production using a HzOR-assisted energy-efficient electrolyzer. 展开更多
关键词 PLA CuPd alloy Sonochemical process HzOR hydrazine evolution reaction hydrazine splitting Water splitting
原文传递
Cobalt‐regulation‐induced dual active sites in Ni_(2)P for hydrazine electrooxidation 被引量:2
11
作者 Bo Zhou Mengyu Li +8 位作者 Yingying Li Yanbo Liu Yuxuan Lu Wei Li Yujie Wu Jia Huo Yanyong Wang Li Tao Shuangyin Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期1131-1138,共8页
Better understanding of electrochemical reaction behaviors of hydrazine electrooxidation at metal phosphides has long been desired and the optimization of reaction kinetics has been proved to be operable.Herein,the de... Better understanding of electrochemical reaction behaviors of hydrazine electrooxidation at metal phosphides has long been desired and the optimization of reaction kinetics has been proved to be operable.Herein,the dehydrogenation kinetics of hydrazine electrooxidation at Ni_(2)P is adjusted by Co as the(Ni_(0.6)Co_(0.4))_(2)P catalyzes HzOR effectively with onset potential of–45 mV and only 113 mV is needed to drive the current density of 50 mA cm^(‒2),showing over 60 mV lower than Ni_(2)P and Co_(2)P.It also delivers the maximum power density of 263.0 mW cm^(-2) for direct hydrazine fuel cell.Detailed experimental results revealed that Co doping not only decreases the adsorption energy of N_(2)H_(4) on Ni sites,lowering the energy barrier for dehydrogenation,but also acts as the active sites in the optimal reaction coordination to boost the reaction kinetics.This work represents a breakthrough in improving the catalytic performance of non‐precious metal electrocatalysts for hydrazine electrooxidation and highlights an energy‐saving electrochemical hydrogen production method. 展开更多
关键词 hydrazine electrooxidation reaction Direct hydrazine fuel cell ELECTROCATALYST Activity Nickel phosphide
在线阅读 下载PDF
Use of Hydrazine and Its Substitutes as Fuel
12
作者 A.A.Boryaev 《火炸药学报》 EI CAS CSCD 北大核心 2022年第2期164-178,I0001,共16页
Due to the properties and high reactivity of hydrazine,it is mainly used as rocket fuel not only in its pure form but also in combination with 1,1-dimethylhydrazine and oxidizers(nitrogen tetroxide or nitric acid)form... Due to the properties and high reactivity of hydrazine,it is mainly used as rocket fuel not only in its pure form but also in combination with 1,1-dimethylhydrazine and oxidizers(nitrogen tetroxide or nitric acid)forming a self-igniting mixture with oxidizers.Aerozine 50 and UH 25(a mixture of 75%UDMH(unsymmetrical dimethylhydrazine)and 25%hydrazine hydrate)are the best-known hydrazine mixtures with different hydrazine concentrations.The review addresses the use of hydrazine and its derivatives as fuel.Hydrazine is employed in fuel cells(with air oxygen as an oxidizer)to generate electrochemical energy for transport vehicles.Hydrazine is widely used as monopropellant to design low-thrust rocket engines for orientation and stabilization systems in space vehicles,as well as in energy units.The review also addresses such hydrazine derivatives as methylhydrazine,1,1-dimethylhydrazine,hydrazine monoperchlorate,hydrazine diperchlorate,hydrazine diammonium tetraperchlorate,hydrazine mononitrate,hydrazine dinitrate,hydrazine nitroformate,hydrazine azides,tetrafluorohydrazine,etc.as well as composite propellants,and gel rocket propellants based on hydrazine.The materials in the review can be used as reference information on hydrazine fuels. 展开更多
关键词 liquid fuel hydrazine fuels based on hydrazine derivatives properties and scope of application
在线阅读 下载PDF
Azo Bond Reduction of N,N-diaryl Adipyl Bis-azo Compounds with Hydrazine Hydrate
13
作者 姜小莹 王洪亮 +1 位作者 乔梅英 王丙星 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第6期872-876,共5页
Reduction of a series of N,N'-diaryl adipyl bis-azo compounds using hydrazine hydrate as reductant was investigated. The products were characterized by elemental analysis, IR and 1H NMR methods and confirmed to be N,... Reduction of a series of N,N'-diaryl adipyl bis-azo compounds using hydrazine hydrate as reductant was investigated. The products were characterized by elemental analysis, IR and 1H NMR methods and confirmed to be N,N'-diaryl adipyl dihydrazine. The results show that hydrazine hydrate can selectively reduce azo bonds with other potential reducible bonds intact in the N,N'-diaryl adipyl bis-azo compounds. The yields are high up to 92% under mild reaction conditions. According to the previous reports, this reduction process was attributed to an indirect reduction mechanism through an intermediate diimide. 展开更多
关键词 N N'-diaryl adipyl bis-azo compounds N N'-diaryl adipyl dihydrazine hydrazine hydrate selective reduction
在线阅读 下载PDF
Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant 被引量:19
14
作者 Jian YANG Liang-xing JIANG +2 位作者 Fang-yang LIU Ming JIA Yan-qing LAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2256-2264,共9页
Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and ... Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and examined.97%of the available Li,96%of the available Ni,95%of the available Co,and 86%of the available Mn are extracted under the following optimized conditions:sulfuric acid concentration of 2.0 mol/L,hydrazine sulfate dosage of 30 g/L,solid-to-liquid ratio of 50 g/L,temperature of 80℃,and leaching time of 60 min.The activation energies of the leaching are determined to be 44.32,59.37 and 55.62 k J/mol for Li,Ni and Co,respectively.By performing X-ray diffraction and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy,it is confirmed that the main phase in the leaching residue is MnO2.The results show that hydrazine sulfate is an effective reducing agent in the acid leaching process for spent lithium-ion batteries. 展开更多
关键词 spent lithium-ion batteries reductive acid leaching hydrazine sulfate leaching mechanism KINETICS
在线阅读 下载PDF
NiPt nanoparticles supported on CeO_2 nanospheres for efficient catalytic hydrogen generation from alkaline solution of hydrazine 被引量:5
15
作者 Yana Men Jun Su +3 位作者 Xiangli Wang Ping Cai Gongzhen Cheng Wei Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第3期634-637,共4页
Searching for highly efficient catalysts toward dehydrogenation of hydrazine for chemical hydrogen storage is highly desirable for the development of hydrogen economy. Herein, we report a simple in situ co-reduction s... Searching for highly efficient catalysts toward dehydrogenation of hydrazine for chemical hydrogen storage is highly desirable for the development of hydrogen economy. Herein, we report a simple in situ co-reduction synthesis of NiPt nanoparticles supported on CeO_2 nanospheres and their superior catalytic performance for hydrogen generation from alkaline solution of hydrazine at room temperature. Thanks to the strong electronic interaction arising from synergistic effect at atomic lever and support-metal interaction between NiPt and CeO_2.The obtained Ni_5Pt_5-CeO_2 catalyst exhibits 100% hydrogen selectivity and superior catalytic performance for hydrogen generation from alkaline solution of hydrazine at room temperature, with a TOF value of 416 h 1. 展开更多
关键词 HYDROGEN storage hydrazine HYDROGEN evolution CEO2 NANOSPHERES Support-metal in teraction
原文传递
Isothermal, kinetic, and thermodynamic studies for solid-phase extraction of uranium(VI) via hydrazine-impregnated carbonbased material as efficient adsorbent 被引量:4
16
作者 A.Morsy M.H.Taha +3 位作者 Muhammad Saeed Amir Waseem Muhammad Asad Riaz M.M.Elmaadawy 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第11期41-51,共11页
The current study describes the application of a new extraction method for efficient uranium adsorption via cost-effective hydrazine-impregnated activated carbon.Various experimental parameters such as time, adsorbent... The current study describes the application of a new extraction method for efficient uranium adsorption via cost-effective hydrazine-impregnated activated carbon.Various experimental parameters such as time, adsorbent weight, temperature(°C), and uranium concentration were thoroughly investigated. The synthesized adsorbent was characterized via X-ray diffraction, Fourier transformation infrared spectroscopy(FT-IR), scanning electron microscopy, and thermogravimetric analysis. The results showed86% uranium extraction under optimized conditions(20% P2O5 at 25 °C, 120 min). The obtained findings fit well with thermodynamic and isothermal(Langmuir and Freundlich isotherms) models and pseudo second-order kinetics. In thermodynamic studies, the negative sign of(DG°) specified the spontaneity of process, the negative sign of(DH°) revealed endothermicity, and the positive sign of(DS°) showed high randomness after adsorption. 展开更多
关键词 URANIUM Adsorption Phosphoric acid hydrazine Carbon
在线阅读 下载PDF
Heteroatom-Induced Accelerated Kinetics on Nickel Selenide for Highly Efficient Hydrazine-Assisted Water Splitting and Zn-Hydrazine Battery 被引量:4
17
作者 Hao-Yu Wang Lei Wang +3 位作者 Jin-Tao Ren Wen-Wen Tian Ming-Lei Sun Zhong-Yong Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期492-504,共13页
Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production.Rational design of bifunctional electrocatalysts,which can simultaneously accelerate hydrogen ... Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production.Rational design of bifunctional electrocatalysts,which can simultaneously accelerate hydrogen evolution reaction(HER)/hydrazine oxidation reaction(HzOR)kinetics,is the key step.Herein,we demonstrate the development of ultrathin P/Fe co-doped NiSe_(2) nanosheets supported on modified Ni foam(P/Fe-NiSe_(2)) synthesized through a facile electrodeposition process and subsequent heat treatment.Based on electrochemical measurements,characterizations,and density functional theory calculations,a favorable“2+2”reaction mechanism with a two-step HER process and a two-step HzOR step was fully proved and the specific effect of P doping on HzOR kinetics was investigated.P/Fe-NiSe_(2) thus yields an impressive electrocatalytic performance,delivering a high current density of 100 mA cm^(−2) with potentials of−168 and 200 mV for HER and HzOR,respectively.Additionally,P/Fe-NiSe_(2) can work efficiently for hydrazine-assisted water electrolysis and Zn-Hydrazine(Zn-Hz)battery,making it promising for practical application. 展开更多
关键词 Water electrolysis Hydrogen production hydrazine oxidation Bifunctional electrocatalyst Heteroatom doping
在线阅读 下载PDF
Synthesis of Ni nanowires via a hydrazine reduction route in aqueous ethanol solutions assisted by external magnetic fields 被引量:4
18
作者 L.Y.Zhang J.Wang +3 位作者 L.M.Wei P.Liu H.Wei Y.F.Zhang 《Nano-Micro Letters》 SCIE EI CAS 2009年第1期49-52,共4页
One-dimensional Ni nanostructures were synthesized via a hydrazine reduction route under external magnetic fields. The mixture of de-ionized water and ethanol was used as the reaction solvent and hydrazine hydrate as ... One-dimensional Ni nanostructures were synthesized via a hydrazine reduction route under external magnetic fields. The mixture of de-ionized water and ethanol was used as the reaction solvent and hydrazine hydrate as reducing agents. The morphology and properties of Ni nanostructures were characterized by X-ray diffractometer(XRD), scanning electron microscopy(SEM), and vibrating sample magnetometer(VSM). It was found that the magnetic field strength, concentration of Ni ions,reaction time and temperature as well as p H values played key roles on formation, microstructures and magnetic properties of Ni nanowires. The optimal wires have diameter of ~200 nm and length up to ~200 μm. And their coercivity is ~260 Oe, which is much larger than the commercial Ni powders of 31 Oe. This work presents a simple, low-cost, environment-friendly and large-scale production approach to fabricate one-dimensional magnetic materials. The resulting materials may have potential applications in conductive filters, magnetic sensors and catalytic agents. 展开更多
关键词 Ni fiber hydrazine reduction Magnetic field Magnetic properties
在线阅读 下载PDF
A novel resorufin based fluorescent “turn-on” probe for the selective detection of hydrazine and application in living cells 被引量:3
19
作者 Tun Tang Yu-Qi Chen +6 位作者 Bo-Shi Fu Zhi-Yong He Heng Xiao Fan Wu Jia-Qi Wang Shao-Ru Wang Xiang Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第4期540-544,共5页
In this study, a resorufin derivative RTP-1, which is a novel fluorescent ‘‘turn-on'' probe for sensitive detection of hydrazine within 30 min, is designed and synthesized. The selective deprotection of the ester ... In this study, a resorufin derivative RTP-1, which is a novel fluorescent ‘‘turn-on'' probe for sensitive detection of hydrazine within 30 min, is designed and synthesized. The selective deprotection of the ester group of the probe by hydrazine led to a prominent enhancement of fluorescent intensity, as well as a remarkable color change from colorless to pink, which could be distinguished by naked eye. The fluorescence enhancement showed decent linear relationship with hydrazine concentration ranging from 0 to 50 mmol/L, with a detection limit of 0.84 mmol/L. The specificity of RTP-1 for hydrazine to a number of metal ions, anions and amines is satisfactory. The sensing mechanism of RTP-1 and hydrazine was evaluated by HPLC, ESI mass spectrometry and density functional theory(DFT).Moreover, we have utilized this fluorescent probe for imaging hydrazine in living cells, and the fluorescence was clearly observed when the cells were incubated with hydrazine(100 mmol/L) for 30 min. 展开更多
关键词 RESORUFIN Fluorescent probe hydrazine SELECTIVITY Cell imaging
原文传递
Role of hydrazine and hydrogen peroxide in aluminium hydroxide precipitation from sodium aluminate solution 被引量:3
20
作者 N.K.SAHU C.K.SARANGI +4 位作者 B.DASH B.C.TRIPATHY B.K.SATPATHY D.MEYRICK I.N.BHATTACHARYA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期615-621,共7页
Aluminium hydroxide precipitation from synthetic sodium aluminate solution was studied in the presence of hydrazine or hydrogen peroxide. The addition of low concentration of hydrazine is found to be effective, while ... Aluminium hydroxide precipitation from synthetic sodium aluminate solution was studied in the presence of hydrazine or hydrogen peroxide. The addition of low concentration of hydrazine is found to be effective, while higher amount of hydrogen peroxide is required to generate similar effect. XRD data confirm the product phase to be gibbsitic by nature. The scanning electron micrographs (SEM) show that agglomerated products form in the presence of hydrazine while fine discrete particles are produced with hydrogen peroxide. The probable mechanism of precipitation in the presence of hydrazine and hydrogen peroxide is also discussed. 展开更多
关键词 aluminium hydroxide hydrazine hydrogen peroxide sodium aluminate PRECIPITATION
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部