To prolong the service lifetime of hot-section components used in marine environment at elevated tem-peratures,it is crucial to explore and develop high-temperature corrosion-resistant coatings.High-velocity oxygen fu...To prolong the service lifetime of hot-section components used in marine environment at elevated tem-peratures,it is crucial to explore and develop high-temperature corrosion-resistant coatings.High-velocity oxygen fuel(HVOF)sprayed NiCoCrAlY,Pt-modified NiCoCrAlY and pre-oxidized Pt-modified NiCoCrAlY coatings were prepared and investigated.This study is concerned with the performance of three coat-ings in a simulated marine environment based on the phase composition of corrosion products and mi-crostructure evolution of coating samples combined with first-principles density functional theory.The results show that the NiCoCrAlY coating was subject to accelerated corrosion and extensive aluminum depletion,leading to premature coating failure.The high-temperature corrosion resistance of Pt-modified NiCoCrAlY coating was found to be better than that of NiCoCrAlY coating.In contrast,the pre-oxidized Pt-modified NiCoCrAlY coating offered long-lasting protection and exhibited the best corrosion resistance,which is attributed to the positive synergistic effect between Pt modification and pre-oxidation.展开更多
基金supported by the National Science and Technology Major Project(No.J2019-IV-0006-0074)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2021-2-2)+2 种基金the National Natural Science Foundation of China(No.52301116)support by the Joint Funds of the National Natural Science Foundation of China(“Ye Qisun”Science Funds,No.U2241251)the Innovation Engineering Project(No.211-XXXX-N106-01).
文摘To prolong the service lifetime of hot-section components used in marine environment at elevated tem-peratures,it is crucial to explore and develop high-temperature corrosion-resistant coatings.High-velocity oxygen fuel(HVOF)sprayed NiCoCrAlY,Pt-modified NiCoCrAlY and pre-oxidized Pt-modified NiCoCrAlY coatings were prepared and investigated.This study is concerned with the performance of three coat-ings in a simulated marine environment based on the phase composition of corrosion products and mi-crostructure evolution of coating samples combined with first-principles density functional theory.The results show that the NiCoCrAlY coating was subject to accelerated corrosion and extensive aluminum depletion,leading to premature coating failure.The high-temperature corrosion resistance of Pt-modified NiCoCrAlY coating was found to be better than that of NiCoCrAlY coating.In contrast,the pre-oxidized Pt-modified NiCoCrAlY coating offered long-lasting protection and exhibited the best corrosion resistance,which is attributed to the positive synergistic effect between Pt modification and pre-oxidation.