High-voltage direct current(HVDC)grids require fast and reliable protection of the DC lines.The performance of traditional protection schemes is easily impaired by the limitations of the boundary condition and nonline...High-voltage direct current(HVDC)grids require fast and reliable protection of the DC lines.The performance of traditional protection schemes is easily impaired by the limitations of the boundary condition and nonlinearity from the control of converters.One of the key technologies for flexible HVDC grids is the half-bridge modular multilevel converter(HB-MMC).Considering the high controllability of HB-MMC,this study proposes an active injection protection scheme to improve the reliability and sensitivity of the HVDC grid protection.The HB-MMC is used to inject a sinusoidal characteristic signal,at the specified frequency,into the DC lines.Then,the voltage and current at the specified frequency are extracted using the Prony algorithm to calculate the input impedance,which is used for the identification of internal and external faults.The active injection protection scheme was simulated for various cases in the simulation software Power Systems Computer Aided Design.The simulation results indicate that the proposed protection scheme is highly reliable and can overcome transition resistance.展开更多
This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)g...This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)grid.The DC CFC consists of two identical full bridge DC-DC converters with the capacitors of the two converters being connected in parallel.The scalability of the DC CFC is easily achievable due to the identical bridge converter topology;the cost of this DC CFC is also relatively low due to its simple physical structure and low voltage ratings.The control performance of the DC CFC is tested on a meshed 3-terminal(3-T)HVDC grid,which is based on modular multilevel converters(MMC).The DC branch current control in the meshed MTDC grid is achieved using the proposed control strategy of the DC CFC,and is verified through case studies on the real-time digital simulator(RTDS).展开更多
HVDC technology has undergone many major developments in the past decades,resulting in higher power ratings,increased efficiency,and the availability of effective means for HVDC grid protection.These developments have...HVDC technology has undergone many major developments in the past decades,resulting in higher power ratings,increased efficiency,and the availability of effective means for HVDC grid protection.These developments have made overlay HVDC grids a viable option to shift towards a carbon-free power system,by enabling optimal use of renewable resources.In particular,overlay HVDC grids greatly increase the prospect of building(trans-)continental supergrids to facilitate global economic development.However,overlay HVDC grids still encounter challenges due to the distance and amount of power involved.This paper focuses on analyzing the readiness of the current technologies and the challenges associated with overlay HVDC grids.An in-depth analysis is carried out to evaluate the applicability of current technologies for overlay HVDC grids.Based on the review of recent research and development efforts,the gaps and challenges towards the realization of a global HVDC grid are summarized.展开更多
This paper proposes a frequency domain based methodology to analyse the influence of High Voltage Direct Current(HVDC) configurations and system parameters on the travelling wave behaviour during a DC fault. The metho...This paper proposes a frequency domain based methodology to analyse the influence of High Voltage Direct Current(HVDC) configurations and system parameters on the travelling wave behaviour during a DC fault. The method allows us to gain deeper understanding of these influencing parameters. In the literature, the majority of DC protection algorithms essentially use thefirst travelling waves initiated by a DC fault for fault discrimination due to the stringent time constraint in DC grid protection. However, most protection algorithms up to now have been designed based on extensive time domain simulations using one specific test system. Therefore, general applicability or adaptability to different configurations and system changes is not by default ensured, and it is difficult to gain in-depth understanding of the influencing parameters through time domain simulations. In order to analyse the first travelling wave for meshed HVDC grids, voltage and current wave transfer functions with respect to the incident voltage wave are derived adopting Laplace domain based component models. The step responses obtained from the voltage transfer functions are validated by comparison against simulations using a detailed model implemented in PSCADTM. Then, the influences of system parameters such as the number of parallel branches, HVDC grid configurations and groundings on the first travelling wave are investigated by analysing the voltage and current transfer functions.展开更多
Based on the comparison of existing power flow controllers(PFC)in meshed HVDC grids,the full-bridge modular multilevel converter based PFC(MMPFC)is proposed.At first,the general branch current calculation method of me...Based on the comparison of existing power flow controllers(PFC)in meshed HVDC grids,the full-bridge modular multilevel converter based PFC(MMPFC)is proposed.At first,the general branch current calculation method of meshed HVDC grids with the PFC is presented,and then,the issue of over-voltage on the thyristor based PFC is described and analyzed.Through the analysis of different operating modes of the full-bridge sub-module,the mechanism of over-voltage ride through of the MMPFC is indicated.The control strategy of the MMPFC,which is used to control branch current and keep capacitor voltage balancing,is elaborated.Finally,the performance on current regulation,bidirectional operation and over-voltage ride through is simulated and verified in a built model with PSCAD/EMTDC.展开更多
This paper proposes a simple and fast way to determine the direction of a fault in a multi-terminal high voltage direct current(HVDC) grid by comparing the rate of change of voltage(ROCOV) values at either side of the...This paper proposes a simple and fast way to determine the direction of a fault in a multi-terminal high voltage direct current(HVDC) grid by comparing the rate of change of voltage(ROCOV) values at either side of the di/dt limiting inductors at the line terminals. A local measurement based secure and fast protection method is implemented by supervising a basic ROCOV relay with a directional element. This directional information is also used to develop a slower communication based DC line protection scheme for detecting high resistance faults. The proposed protection scheme is applied to a multi-level modular converter based three-terminal HVDC grid and its security and sensitivity are evaluated through electromagnetic transient simulations. A methodology to set the protection thresholds considering the constraints imposed by the breaker technology and communication delays is also presented. With properly designed di/dt limiting inductors,the ability of clearing any DC transmission system fault before fault currents exceeds a given breaker capacity is demonstrated.展开更多
A modular DC/DC conversion system with distributed MPPT and centralized step-up converter for photovoltaic energy integrated into HVDC grids is proposed in this paper.The conversion system consists of two power stages...A modular DC/DC conversion system with distributed MPPT and centralized step-up converter for photovoltaic energy integrated into HVDC grids is proposed in this paper.The conversion system consists of two power stages,with MPPT converter as the first stage and a step-up converter as the second stage.Both stages are modular structures.For the distributed MPPT stage,interleaved boost topology is utilized to effectively reduce the input and output ripples without adding extra components.For the centralized step-up stage,narrow-switching-frequency-variation LLC topology is employed,with the modules being configured as input-parallel-output-series structure.Full-range soft-switching property is achieved in the LLC stage to minimize switching losses.Theoretical analysis is carried out for the system voltage gain and design principles.Simulation and experimental results of a 3kW prototype system are presented to verify the theoretical analysis of the proposed system.展开更多
This paper proposes a star type multiport hybrid circuit breaker(Star-HCB)topology for protection of multiterminal DC transmission.Reliability and stability of high voltage DC(HVDC)grids are determined by their capabi...This paper proposes a star type multiport hybrid circuit breaker(Star-HCB)topology for protection of multiterminal DC transmission.Reliability and stability of high voltage DC(HVDC)grids are determined by their capabilities to withstand DC-side faults.In order to maintain reliability of HVDC grids,both ends of each line should be equipped with hybrid circuit breakers(HCB).This method will increase expenditure of the HVDC,especially the meshed topology.The n-port Star-HCB consists of ultra-fast mechanical disconnectors,load current switch and only one transferring branch which is formed by improved half-bridge sub-module.Compared with existing traditional hybrid circuit breakers and other multiport hybrid circuit breakers,the proposed topology can realize the same short-circuit blocking goal using fewer components.Detailed mathematical transient process calculation and timedomain simulation of the proposed Star-HCB are given to verify its superiority.展开更多
For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in...For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.展开更多
Pole-to-ground(PTG) fault analysis is of vital importance for high-voltage direct current(HVDC) grid. However, many factors are not considered in the existing studies such as the asymmetrical property of PTG fault, th...Pole-to-ground(PTG) fault analysis is of vital importance for high-voltage direct current(HVDC) grid. However, many factors are not considered in the existing studies such as the asymmetrical property of PTG fault, the coupling issue between DC transmission lines and the complexity of the structure of DC grid. This paper presents a PTG fault analysis method, which is based on common-and differential-mode(CDM)transformation. Similar to the symmetrical component method in AC system, the transformation decomposes the HVDC grid into CDM networks, which is balanced and decoupled. Then, a transfer impedance is defined and calculated based on the impedance matrices of the CDM networks. With the transfer impedance, analytical expressions of fault characteristics that vary with space and time are obtained. The proposed PTG fault analysis method is applicable to arbitrary HVDC grid topologies,and provides a new perspective to understand the fault mechanism. Moreover, the analytical expressions offer theoretical guidance for PTG fault protection. The validity of the proposed PTG fault analysis method is verified in comparison with the simulation results in PSCAD/EMTDC.展开更多
Because of the realization of HVDC connections parallel to the synchronous grid in Germany, operational concepts become more important in the context of system security aspects. In this article commonly known concepts...Because of the realization of HVDC connections parallel to the synchronous grid in Germany, operational concepts become more important in the context of system security aspects. In this article commonly known concepts are analyzed regarding their suitability for the German transmission system. Therefore, an approach for the analysis was developed and exemplary results are given using this approach. Under consideration of the overall system, the concepts of reducing losses in combination with minimizing(n-1)-warnings or-indications^1 as well as the sole minimization of(n-1)-warnings and-indications are the most reasonable approaches. However, under grid security aspects best results can be achieved by reducing operational limits and therefore, by the minimization of(n-1)-warnings.展开更多
Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation ...Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation of twoline/multi-lineDC current flow controllers (CFCs), a small-signalmodel of the DC CFCs integrated M2TDC grids is derived,studying the impact of the power losses of the DC CFC andtheir influence on the analysis of energy exchanges. The systemstability analysis is analysed using the Nyquist diagram, which ismore suitable for analyzing complex nonlinear systems with morecompact and reliable indicators of stability in comparison withgain/phase margins shown in the Bode diagram. In addition, aselection method of the interconnected capacitor of the DC CFCis proposed under different operating conditions. The impact ofthe switching frequencies of the DC CFC on the control ranges ofthe DC current flows is analyzed. The effectiveness of the Nyquistanalysis and the capacitance selection method is verified bysimulation studies using PSCAD/EMTDC. The obtained control ranges of the DC CFC with different switching frequenciesand capacitances would be useful for practical engineeringapplications.展开更多
针对可再生能源通过电力电子设备并人电力系统,导致电网系统强度减弱,物理惯性降低的问题,文章提出一种适用于柔性直流输电(Modular Multilevel Converter Based High Voltage Direct Current,MMC-HVDC)连接弱交流系统MMC内部能量控制...针对可再生能源通过电力电子设备并人电力系统,导致电网系统强度减弱,物理惯性降低的问题,文章提出一种适用于柔性直流输电(Modular Multilevel Converter Based High Voltage Direct Current,MMC-HVDC)连接弱交流系统MMC内部能量控制的组网控制策略。在下重组网控制的基础上,加入惯性环节和PI控制环节,使得MMC能够自动跟踪负荷变化调整自身功率输出,实现对交流电压和频率的无差调节。针对组网控制的MMC内部能量波动较大的问题,设计了一种MMC内部能量补偿控制策略,该策略能够有效降低子模块电容电压波动。最后,基于PSCAD/EMTDC电磁暂态仿真平台建立MMC-HVDC系统,并选取交流系统负荷增加、负荷减少两种工况,验证了所提控制策略的可行性和有效性。展开更多
“双碳”目标的确立推动了新能源的快速发展。大规模电力电子设备的接入,使得电网呈现低惯量的特性。基于模块化多电平变换器(modular multilevel converter,MMC)的柔性直流输电系统在连接弱电网的场景下,其换流站采用虚拟同步机(virtua...“双碳”目标的确立推动了新能源的快速发展。大规模电力电子设备的接入,使得电网呈现低惯量的特性。基于模块化多电平变换器(modular multilevel converter,MMC)的柔性直流输电系统在连接弱电网的场景下,其换流站采用虚拟同步机(virtual synchronous generator,VSG)控制来模拟同步发电机的机械特性,可以为新能源系统提供惯量支撑。为满足不同工况,换流站需要在两种控制模式--构网型控制和跟网型控制之间进行切换。文中提出了一种MMC-高压直流输电(high voltage direct current,HVDC)换流站构网型和跟网型控制无缝切换技术,在不改变内环电流控制的前提下,通过构建构网型和跟网型控制统一的外环参考电流,保证换流站输出电压在切换过程中功角和幅值的连续性。仿真结果表明,所提的无缝切换技术可以有效降低控制切换过程对系统造成的过流或者过压影响。展开更多
针对大规模近海风电场地理分布上高度分散以及主要采用双馈式或直驱/半直驱式风电机组的特点,提出了相应的电压源型变流器的高压直流(voltage source converter based HVDC,VSC-HVDC)并网传输拓扑结构,并设计了相应的控制策略。为验证...针对大规模近海风电场地理分布上高度分散以及主要采用双馈式或直驱/半直驱式风电机组的特点,提出了相应的电压源型变流器的高压直流(voltage source converter based HVDC,VSC-HVDC)并网传输拓扑结构,并设计了相应的控制策略。为验证所提方案的可行性,利用Matlab/Simulink构建了一个近海风电场的5端口VSC-HVDC并网传输系统,并进行了系列仿真。仿真结果表明,所提VSC-HVDC方案可为大规模近海风电场的并网传输提供优化的解决方案。展开更多
模块化多电平换流器型直流输电系统(modular multilevel converter based high voltage direct current,MMCHVDC)和交流线路可为重要负荷双路供电,因此MMCHVDC需具备在联网运行状态和孤岛运行状态间稳定转换的能力。该文分析了MMC在联...模块化多电平换流器型直流输电系统(modular multilevel converter based high voltage direct current,MMCHVDC)和交流线路可为重要负荷双路供电,因此MMCHVDC需具备在联网运行状态和孤岛运行状态间稳定转换的能力。该文分析了MMC在联网状态和孤岛状态间相互转换的过程,并设计了一种基于本地电气量的MMC控制模式切换策略。之后,对MMC无源供电控制器进行改进,设计了一种无需切换控制模式的MMC下垂控制策略。最后,通过PSCAD仿真对上述2种转换策略进行验证和比较,结果表明2种策略均能使MMC在联网状态和孤岛状态间稳定转换。2种策略各有优缺点,实际应用中MMC需依据具体的控制目标选取合适的策略。展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.2020YJS169)The National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U2066210).
文摘High-voltage direct current(HVDC)grids require fast and reliable protection of the DC lines.The performance of traditional protection schemes is easily impaired by the limitations of the boundary condition and nonlinearity from the control of converters.One of the key technologies for flexible HVDC grids is the half-bridge modular multilevel converter(HB-MMC).Considering the high controllability of HB-MMC,this study proposes an active injection protection scheme to improve the reliability and sensitivity of the HVDC grid protection.The HB-MMC is used to inject a sinusoidal characteristic signal,at the specified frequency,into the DC lines.Then,the voltage and current at the specified frequency are extracted using the Prony algorithm to calculate the input impedance,which is used for the identification of internal and external faults.The active injection protection scheme was simulated for various cases in the simulation software Power Systems Computer Aided Design.The simulation results indicate that the proposed protection scheme is highly reliable and can overcome transition resistance.
基金supported by UK-China Smart Grid Project ERIFT via UK EPSRC,University of Birmingham SiGuang Li Scholarship and China Scholarship Council。
文摘This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)grid.The DC CFC consists of two identical full bridge DC-DC converters with the capacitors of the two converters being connected in parallel.The scalability of the DC CFC is easily achievable due to the identical bridge converter topology;the cost of this DC CFC is also relatively low due to its simple physical structure and low voltage ratings.The control performance of the DC CFC is tested on a meshed 3-terminal(3-T)HVDC grid,which is based on modular multilevel converters(MMC).The DC branch current control in the meshed MTDC grid is achieved using the proposed control strategy of the DC CFC,and is verified through case studies on the real-time digital simulator(RTDS).
基金supported in part by the Science and Technology Project of State Grid Corporation of China(HVDC Systems/Grids for Transnational Interconnections)under Grant No.SGTYHT/16-JS-198。
文摘HVDC technology has undergone many major developments in the past decades,resulting in higher power ratings,increased efficiency,and the availability of effective means for HVDC grid protection.These developments have made overlay HVDC grids a viable option to shift towards a carbon-free power system,by enabling optimal use of renewable resources.In particular,overlay HVDC grids greatly increase the prospect of building(trans-)continental supergrids to facilitate global economic development.However,overlay HVDC grids still encounter challenges due to the distance and amount of power involved.This paper focuses on analyzing the readiness of the current technologies and the challenges associated with overlay HVDC grids.An in-depth analysis is carried out to evaluate the applicability of current technologies for overlay HVDC grids.Based on the review of recent research and development efforts,the gaps and challenges towards the realization of a global HVDC grid are summarized.
基金funded by Horizon 2020 PROMOTioN(Progress on Meshed HVDC Offshore Transmission Networks)project under Grant Agreement No.691714funded by a research grant of the Research Foundation-Flanders(FWO)
文摘This paper proposes a frequency domain based methodology to analyse the influence of High Voltage Direct Current(HVDC) configurations and system parameters on the travelling wave behaviour during a DC fault. The method allows us to gain deeper understanding of these influencing parameters. In the literature, the majority of DC protection algorithms essentially use thefirst travelling waves initiated by a DC fault for fault discrimination due to the stringent time constraint in DC grid protection. However, most protection algorithms up to now have been designed based on extensive time domain simulations using one specific test system. Therefore, general applicability or adaptability to different configurations and system changes is not by default ensured, and it is difficult to gain in-depth understanding of the influencing parameters through time domain simulations. In order to analyse the first travelling wave for meshed HVDC grids, voltage and current wave transfer functions with respect to the incident voltage wave are derived adopting Laplace domain based component models. The step responses obtained from the voltage transfer functions are validated by comparison against simulations using a detailed model implemented in PSCADTM. Then, the influences of system parameters such as the number of parallel branches, HVDC grid configurations and groundings on the first travelling wave are investigated by analysing the voltage and current transfer functions.
基金supported by the National High Technology Research and Development Program of China("863"Program)(Grant No.2012AA050205)
文摘Based on the comparison of existing power flow controllers(PFC)in meshed HVDC grids,the full-bridge modular multilevel converter based PFC(MMPFC)is proposed.At first,the general branch current calculation method of meshed HVDC grids with the PFC is presented,and then,the issue of over-voltage on the thyristor based PFC is described and analyzed.Through the analysis of different operating modes of the full-bridge sub-module,the mechanism of over-voltage ride through of the MMPFC is indicated.The control strategy of the MMPFC,which is used to control branch current and keep capacitor voltage balancing,is elaborated.Finally,the performance on current regulation,bidirectional operation and over-voltage ride through is simulated and verified in a built model with PSCAD/EMTDC.
文摘This paper proposes a simple and fast way to determine the direction of a fault in a multi-terminal high voltage direct current(HVDC) grid by comparing the rate of change of voltage(ROCOV) values at either side of the di/dt limiting inductors at the line terminals. A local measurement based secure and fast protection method is implemented by supervising a basic ROCOV relay with a directional element. This directional information is also used to develop a slower communication based DC line protection scheme for detecting high resistance faults. The proposed protection scheme is applied to a multi-level modular converter based three-terminal HVDC grid and its security and sensitivity are evaluated through electromagnetic transient simulations. A methodology to set the protection thresholds considering the constraints imposed by the breaker technology and communication delays is also presented. With properly designed di/dt limiting inductors,the ability of clearing any DC transmission system fault before fault currents exceeds a given breaker capacity is demonstrated.
基金Supported by the National Key Research and Development Program“Novel DC-DC Boost Converter Module Based on Wide Bandgap Power Device for HVDC-Connected Photovoltaic Unit”(2016YFB0900205).
文摘A modular DC/DC conversion system with distributed MPPT and centralized step-up converter for photovoltaic energy integrated into HVDC grids is proposed in this paper.The conversion system consists of two power stages,with MPPT converter as the first stage and a step-up converter as the second stage.Both stages are modular structures.For the distributed MPPT stage,interleaved boost topology is utilized to effectively reduce the input and output ripples without adding extra components.For the centralized step-up stage,narrow-switching-frequency-variation LLC topology is employed,with the modules being configured as input-parallel-output-series structure.Full-range soft-switching property is achieved in the LLC stage to minimize switching losses.Theoretical analysis is carried out for the system voltage gain and design principles.Simulation and experimental results of a 3kW prototype system are presented to verify the theoretical analysis of the proposed system.
基金supported by the Institute of Electrical Engineering,CAS under grant(E155610101,E155610201 and E155610301).
文摘This paper proposes a star type multiport hybrid circuit breaker(Star-HCB)topology for protection of multiterminal DC transmission.Reliability and stability of high voltage DC(HVDC)grids are determined by their capabilities to withstand DC-side faults.In order to maintain reliability of HVDC grids,both ends of each line should be equipped with hybrid circuit breakers(HCB).This method will increase expenditure of the HVDC,especially the meshed topology.The n-port Star-HCB consists of ultra-fast mechanical disconnectors,load current switch and only one transferring branch which is formed by improved half-bridge sub-module.Compared with existing traditional hybrid circuit breakers and other multiport hybrid circuit breakers,the proposed topology can realize the same short-circuit blocking goal using fewer components.Detailed mathematical transient process calculation and timedomain simulation of the proposed Star-HCB are given to verify its superiority.
基金supported by the State Grid Corporation of China Headquarter technology project (52010118000K)
文摘For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.
基金supported in part by National Key Research and Development Program of China (No.2016YFB0900100)。
文摘Pole-to-ground(PTG) fault analysis is of vital importance for high-voltage direct current(HVDC) grid. However, many factors are not considered in the existing studies such as the asymmetrical property of PTG fault, the coupling issue between DC transmission lines and the complexity of the structure of DC grid. This paper presents a PTG fault analysis method, which is based on common-and differential-mode(CDM)transformation. Similar to the symmetrical component method in AC system, the transformation decomposes the HVDC grid into CDM networks, which is balanced and decoupled. Then, a transfer impedance is defined and calculated based on the impedance matrices of the CDM networks. With the transfer impedance, analytical expressions of fault characteristics that vary with space and time are obtained. The proposed PTG fault analysis method is applicable to arbitrary HVDC grid topologies,and provides a new perspective to understand the fault mechanism. Moreover, the analytical expressions offer theoretical guidance for PTG fault protection. The validity of the proposed PTG fault analysis method is verified in comparison with the simulation results in PSCAD/EMTDC.
文摘Because of the realization of HVDC connections parallel to the synchronous grid in Germany, operational concepts become more important in the context of system security aspects. In this article commonly known concepts are analyzed regarding their suitability for the German transmission system. Therefore, an approach for the analysis was developed and exemplary results are given using this approach. Under consideration of the overall system, the concepts of reducing losses in combination with minimizing(n-1)-warnings or-indications^1 as well as the sole minimization of(n-1)-warnings and-indications are the most reasonable approaches. However, under grid security aspects best results can be achieved by reducing operational limits and therefore, by the minimization of(n-1)-warnings.
基金National Natural Science Foundation of China under Grant 51807091Natural Science Foundation of Jiangsu Province BK20180478+1 种基金the China Postdoctoral Science Foundation under Grant 2019M661846EPSRC under Grant EP/N032888/1.
文摘Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation of twoline/multi-lineDC current flow controllers (CFCs), a small-signalmodel of the DC CFCs integrated M2TDC grids is derived,studying the impact of the power losses of the DC CFC andtheir influence on the analysis of energy exchanges. The systemstability analysis is analysed using the Nyquist diagram, which ismore suitable for analyzing complex nonlinear systems with morecompact and reliable indicators of stability in comparison withgain/phase margins shown in the Bode diagram. In addition, aselection method of the interconnected capacitor of the DC CFCis proposed under different operating conditions. The impact ofthe switching frequencies of the DC CFC on the control ranges ofthe DC current flows is analyzed. The effectiveness of the Nyquistanalysis and the capacitance selection method is verified bysimulation studies using PSCAD/EMTDC. The obtained control ranges of the DC CFC with different switching frequenciesand capacitances would be useful for practical engineeringapplications.
文摘针对可再生能源通过电力电子设备并人电力系统,导致电网系统强度减弱,物理惯性降低的问题,文章提出一种适用于柔性直流输电(Modular Multilevel Converter Based High Voltage Direct Current,MMC-HVDC)连接弱交流系统MMC内部能量控制的组网控制策略。在下重组网控制的基础上,加入惯性环节和PI控制环节,使得MMC能够自动跟踪负荷变化调整自身功率输出,实现对交流电压和频率的无差调节。针对组网控制的MMC内部能量波动较大的问题,设计了一种MMC内部能量补偿控制策略,该策略能够有效降低子模块电容电压波动。最后,基于PSCAD/EMTDC电磁暂态仿真平台建立MMC-HVDC系统,并选取交流系统负荷增加、负荷减少两种工况,验证了所提控制策略的可行性和有效性。
文摘“双碳”目标的确立推动了新能源的快速发展。大规模电力电子设备的接入,使得电网呈现低惯量的特性。基于模块化多电平变换器(modular multilevel converter,MMC)的柔性直流输电系统在连接弱电网的场景下,其换流站采用虚拟同步机(virtual synchronous generator,VSG)控制来模拟同步发电机的机械特性,可以为新能源系统提供惯量支撑。为满足不同工况,换流站需要在两种控制模式--构网型控制和跟网型控制之间进行切换。文中提出了一种MMC-高压直流输电(high voltage direct current,HVDC)换流站构网型和跟网型控制无缝切换技术,在不改变内环电流控制的前提下,通过构建构网型和跟网型控制统一的外环参考电流,保证换流站输出电压在切换过程中功角和幅值的连续性。仿真结果表明,所提的无缝切换技术可以有效降低控制切换过程对系统造成的过流或者过压影响。
文摘针对大规模近海风电场地理分布上高度分散以及主要采用双馈式或直驱/半直驱式风电机组的特点,提出了相应的电压源型变流器的高压直流(voltage source converter based HVDC,VSC-HVDC)并网传输拓扑结构,并设计了相应的控制策略。为验证所提方案的可行性,利用Matlab/Simulink构建了一个近海风电场的5端口VSC-HVDC并网传输系统,并进行了系列仿真。仿真结果表明,所提VSC-HVDC方案可为大规模近海风电场的并网传输提供优化的解决方案。
文摘模块化多电平换流器型直流输电系统(modular multilevel converter based high voltage direct current,MMCHVDC)和交流线路可为重要负荷双路供电,因此MMCHVDC需具备在联网运行状态和孤岛运行状态间稳定转换的能力。该文分析了MMC在联网状态和孤岛状态间相互转换的过程,并设计了一种基于本地电气量的MMC控制模式切换策略。之后,对MMC无源供电控制器进行改进,设计了一种无需切换控制模式的MMC下垂控制策略。最后,通过PSCAD仿真对上述2种转换策略进行验证和比较,结果表明2种策略均能使MMC在联网状态和孤岛状态间稳定转换。2种策略各有优缺点,实际应用中MMC需依据具体的控制目标选取合适的策略。