期刊文献+
共找到352篇文章
< 1 2 18 >
每页显示 20 50 100
Output Feedback Q-Learning for a Non-Zero-Sum Game Problem in Building HVAC Control
1
作者 ANWAR Junaid RIZVI Syed Ali Asad LIN Zongli 《Journal of Systems Science & Complexity》 2025年第2期739-755,共17页
Building heating,ventilating,and air conditioning(HVAC)systems have one of the largest energy footprint worldwide,which necessitates the design of intelligent control algorithms that improve the energy utilization whi... Building heating,ventilating,and air conditioning(HVAC)systems have one of the largest energy footprint worldwide,which necessitates the design of intelligent control algorithms that improve the energy utilization while still providing thermal comfort.In this work,the authors formulate the HVAC equipment dynamics in the setting of a two-player non-zero-sum cooperative game,which enables two decision variables(mass flow rate and supply air temperature)to perform joint optimization of the control utilization and thermal setpoint tracking by simultaneously exchanging their policies.The HVAC zone serves as a game environment for these two decision variables that act as two players in a game.It is assumed that dynamic models of HVAC equipment are not available.Furthermore,neither the state nor any estimates of HVAC disturbance(heat gains,outside variations,etc.)are accessible,but only the measurement of the zone temperature is available for feedback.Under these constraints,the authors develop a new data-driven Q-learning scheme employing policy iteration and value iteration with a bias compensation mechanism that accounts for unmeasurable disturbances and circumvents the need of full-state measurement.The proposed algorithms are shown to converge to the optimal solution corresponding to the generalized algebraic Riccati equations(GAREs)in dynamic games. 展开更多
关键词 s Game theory hvac control optimal control output feedback Q-LEARNING
原文传递
Improving HVAC control with transfer learning:Using padding techniques for cross-building pre-training and fine-tuning
2
作者 Kevlyn Kadamala Des Chambers Enda Barrett 《Energy and AI》 2025年第3期191-201,共11页
Recent advancements have shown that control strategies using Deep Reinforcement Learning(DRL)can significantly improve the management of HVAC control and energy systems in buildings,leading to significant energy savin... Recent advancements have shown that control strategies using Deep Reinforcement Learning(DRL)can significantly improve the management of HVAC control and energy systems in buildings,leading to significant energy savings and better comfort.Unlike conventional rule-based controllers,they demand considerable time and data to develop effective policies.Transfer learning using pre-trained models can help address this issue.In this work,we use imitation learning(IL)as a method of pre-training and reinforcement learning(RL)for fine-tuning.However,HVAC systems can vary depending on the location,building size,structure,construction materials and weather conditions.The diversity in HVAC control systems across different buildings complicates the use of IL and RL.Neural network weights trained on the source building cannot be directly transferred to the target building because of differences in input features and the number of control equipment.To overcome this problem,we propose a novel padding method to ensure that both the source and target buildings share the same state space dimensionality.Thus,the trained neural network weights are transferable,and only the output layer must be adjusted to fit the dimensionality of the target action space.Additionally,we evaluate the performance of an existing padding technique for comparison.Our experiments show that the novel padding technique outperforms zero padding by 1.37%and training from scratch by 4.59%on average. 展开更多
关键词 Transfer learning Reinforcement learning Imitation learning Continuous hvac control
在线阅读 下载PDF
Reinforcement learning for whole-building HVAC control and demand response 被引量:7
3
作者 Donald Azuatalam Wee-Lih Lee +1 位作者 Frits de Nijs Ariel Liebman 《Energy and AI》 2020年第2期15-32,共18页
This paper proposes a novel reinforcement learning(RL)architecture for the efficient scheduling and control of the heating,ventilation and air conditioning(HVAC)system in a commercial building while harnessing its de-... This paper proposes a novel reinforcement learning(RL)architecture for the efficient scheduling and control of the heating,ventilation and air conditioning(HVAC)system in a commercial building while harnessing its de-mand response(DR)potentials.With advances in automated building management systems,this can be achieved seamlessly by a smart autonomous RL agent which takes the best action,for example,a change in HVAC temper-ature set point,necessary to change the electricity usage pattern of a building in response to demand response signals,and with minimal thermal comfort impact to customers.Previous research in this area has tackled only individual aspects of the problem using RL.Specifically,due to the challenges in implementing demand response with whole-building models,simpler analytical models which poorly capture reality have been used instead.And where whole-building models are applied,RL is used for HVAC control mainly to achieve energy efficiency goals while demand response is neglected.Thus,in this research,we implement a holistic framework by designing an efficient RL controller for a whole-building model which learns to optimise and control the HVAC system for improved energy efficiency and thermal comfort levels in addition to achieving demand response goals.Our simulation results show that by applying reinforcement learning for normal HVAC operation,a maximum weekly energy reduction of up to 22%can be achieved compared to a handcrafted baseline controller.Furthermore,by employing a DR-aware RL controller during demand response periods,average power reductions or increases of up to 50%can be achieved on a weekly basis compared to the default RL controller,while keeping occupant thermal comfort levels within acceptable bounds. 展开更多
关键词 Demand response Reinforcement learning Whole-building hvac control Distributed energy resources Optimal hvac energy scheduling
在线阅读 下载PDF
Development of a Bias Compensating Q-Learning Controller for a Multi-Zone HVAC Facility
4
作者 Syed Ali Asad Rizvi Amanda J.Pertzborn Zongli Lin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1704-1715,共12页
We present the development of a bias compensating reinforcement learning(RL)algorithm that optimizes thermal comfort(by minimizing tracking error)and control utilization(by penalizing setpoint deviations)in a multi-zo... We present the development of a bias compensating reinforcement learning(RL)algorithm that optimizes thermal comfort(by minimizing tracking error)and control utilization(by penalizing setpoint deviations)in a multi-zone heating,ventilation,and air-conditioning(HVAC)lab facility subject to unmeasurable disturbances and unknown dynamics.It is shown that the presence of unmeasurable disturbance results in an inconsistent learning equation in traditional RL controllers leading to parameter estimation bias(even with integral action support),and in the extreme case,the divergence of the learning algorithm.We demonstrate this issue by applying the popular Q-learning algorithm to linear quadratic regulation(LQR)of a multi-zone HVAC environment and showing that,even with integral support,the algorithm exhibits bias issue during the learning phase when the HVAC disturbance is unmeasurable due to unknown heat gains,occupancy variations,light sources,and outside weather changes.To address this difficulty,we present a bias compensating learning equation that learns a lumped bias term as a result of disturbances(and possibly other sources)in conjunction with the optimal control parameters.Experimental results show that the proposed scheme not only recovers the bias-free optimal control parameters but it does so without explicitly learning the dynamic model or estimating the disturbances,demonstrating the effectiveness of the algorithm in addressing the above challenges. 展开更多
关键词 hvac control optimal tracking Q-LEARNING reinforcement learning(RL)
在线阅读 下载PDF
Predictive functional control based on fuzzy T-S model for HVAC systems temperature control 被引量:6
5
作者 Hongli LU Lei JIA +1 位作者 Shulan KONG Zhaosheng ZHANG 《控制理论与应用(英文版)》 EI 2007年第1期94-98,共5页
In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) f... In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) fuzzy model was proposed to control HVAC systems. The T-S fuzzy model of stabilized controlled process was obtained using the least squares method, then on the basis of global linear predictive model from T-S fuzzy model, the process was controlled by the predictive functional controller. Especially the feedback regulation part was developed to compensate uncertainties of fuzzy predictive model. Finally simulation test results in HVAC systems control applications showed that the proposed fuzzy model predictive functional control improves tracking effect and robustness. Compared with the conventional PID controller, this control strategy has the advantages of less overshoot and shorter setting time, etc. 展开更多
关键词 T-S fuzzy model Predictive functional control Least squares method hvac systems
在线阅读 下载PDF
Active-Disturbance-Rejection-Control for Temperature Control of the HVAC System 被引量:2
6
作者 Chun-E. Huang Chunwang Li Xiaojun Ma 《Intelligent Control and Automation》 2018年第1期1-9,共9页
Heating, ventilation, and air conditioning (HVAC) system is significant to the energy efficiency in buildings. In this paper, temperature control of HVAC system is studied in winter operation season. The physical mode... Heating, ventilation, and air conditioning (HVAC) system is significant to the energy efficiency in buildings. In this paper, temperature control of HVAC system is studied in winter operation season. The physical model of the zone, the fan, the heating coil and sensor are built. HVAC is a non-linear, strong disturbance and coupling system. Linear active-rejection-disturbance-control is an appreciate control algorithm which can adapt to less information, strong-disturbance influence, and has relative-fixed structure and simple tuning process of the controller parameters. Active-rejection-disturbance-control of the HVAC system is proposed. Simulation in Matlab/Simulink was done. Simulation results show that linear active-rejection-disturbance-control was prior to PID and integral-fuzzy controllers in rising time, overshoot and response time of step disturbance. The study can provide fundamental basis for the control of the air-condition system with strong-disturbance and high-precision needed. 展开更多
关键词 hvac System Linear Active-Rejection-Disturbance-control PID control Integral-Fuzzy control Temperature control
在线阅读 下载PDF
制药设备中HVAC系统的自动化控制研究 被引量:1
7
作者 刘金乐 《自动化应用》 2025年第5期15-17,共3页
针对制药设备中的暖通空调(HVAC)系统,提出了一种智能控制算法。该算法整合了模糊逻辑、神经网络和多变量协调控制模块,形成了一个高效的智能控制框架。模糊逻辑负责处理系统的非线性特性和不确定性,神经网络实现参数的在线学习和优化,... 针对制药设备中的暖通空调(HVAC)系统,提出了一种智能控制算法。该算法整合了模糊逻辑、神经网络和多变量协调控制模块,形成了一个高效的智能控制框架。模糊逻辑负责处理系统的非线性特性和不确定性,神经网络实现参数的在线学习和优化,而多变量协调控制则确保关键参数之间的平衡。该算法能根据环境变化和系统状态实时调整控制策略,进而满足药品生产质量管理规范(GMP)标准的要求。 展开更多
关键词 制药设备 暖通空调 自动化控制 神经网络
在线阅读 下载PDF
Enhanced Tube-Based Event-Triggered Stochastic Model Predictive Control With Additive Uncertainties
8
作者 Chenxi Gu Xinli Wang +3 位作者 Kang Li Xiaohong Yin Shaoyuan Li Lei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期596-605,共10页
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a... This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control. 展开更多
关键词 Event-triggered mechanism HEATING ventilation and air conditioning(hvac)control probabilistic reachable set stochastic model predictive control
在线阅读 下载PDF
基于数字孪生的洁净厂房HVAC系统实时动态调控技术
9
作者 赵华 白晓华 贾爽 《现代工程科技》 2025年第20期105-108,共4页
洁净厂房对温湿度、颗粒物浓度、压差与气流组织等环境参数提出严格要求,供暖、通风与空气调节(heating,ventilation,air conditioning,HVAC)系统作为其核心支撑面临负荷波动频繁、调控复杂度高等挑战。传统控制策略在动态响应、能效管... 洁净厂房对温湿度、颗粒物浓度、压差与气流组织等环境参数提出严格要求,供暖、通风与空气调节(heating,ventilation,air conditioning,HVAC)系统作为其核心支撑面临负荷波动频繁、调控复杂度高等挑战。传统控制策略在动态响应、能效管理与系统鲁棒性方面存在明显局限。提出了基于数字孪生的洁净厂房HVAC系统实时动态调控技术,构建集感知、预测、决策、执行与反馈于一体的闭环调控架构。通过虚拟模型与物理系统的深度融合,实现对关键运行状态的高精度建模与预测;采用模型预测控制(model predictive control,MPC)提升动态响应性能,引入数据驱动的自适应机制增强系统稳态保持能力;结合强化学习探索长期协同优化策略。在工业仿真环境中完成工程验证,结果显示该方法显著提升环境控制精度与系统能效,具备良好的工程适用性与推广潜力。 展开更多
关键词 数字孪生 洁净厂房 hvac系统 实时控制
在线阅读 下载PDF
Konnex技术及HVAC控制应用 被引量:1
10
作者 孙靖 程大章 司孙浩 《暖通空调》 北大核心 2005年第11期117-121,共5页
在分析现有总线技术应用现状的基础上,介绍了针对楼宇、家居现场控制应用领域开发的总线标准———Konnex,它融合了欧洲三大总线技术(BatiBUS,EIB和EHS),在HVAC控制领域具有良好的应用前景。通过实例介绍了Konnex在HVAC控制中的应用和... 在分析现有总线技术应用现状的基础上,介绍了针对楼宇、家居现场控制应用领域开发的总线标准———Konnex,它融合了欧洲三大总线技术(BatiBUS,EIB和EHS),在HVAC控制领域具有良好的应用前景。通过实例介绍了Konnex在HVAC控制中的应用和配置方式。 展开更多
关键词 Konnex hvac控制 楼宇自控 总线技术
在线阅读 下载PDF
HVAC风道空气泄漏检测方法研究 被引量:2
11
作者 田韶鹏 杨莉玲 +1 位作者 徐达伟 韩爱国 《汽车技术》 北大核心 2009年第5期50-52,共3页
介绍了一种用于自动控制检测采暖通风与空调(HVAC)总成及风门的空气泄漏量的检测方法。在HVAC接口的上游建立一个稳压室,利用自动检测与控制方法使稳压室的空气压力稳定在一定范围内,通过稳压室上游接口处的流量传感器来检测HVAC的空气... 介绍了一种用于自动控制检测采暖通风与空调(HVAC)总成及风门的空气泄漏量的检测方法。在HVAC接口的上游建立一个稳压室,利用自动检测与控制方法使稳压室的空气压力稳定在一定范围内,通过稳压室上游接口处的流量传感器来检测HVAC的空气泄漏情况。与传统检测技术相比,该检测方法具有灵敏度高、压力控制准确、自动化程度高、使用方便等特性。 展开更多
关键词 hvac 空气泄漏 检测 自动控制
在线阅读 下载PDF
基于模糊线性化预测模型的HVAC系统温度控制 被引量:4
12
作者 吕红丽 贾磊 +2 位作者 王雷 高瑞 CAI Wen-jian 《控制与决策》 EI CSCD 北大核心 2006年第12期1412-1416,共5页
针对暖通空调(HVAC)系统难以控制的问题,提出一种基于m ax-product推理的M am dan i模糊模型预测控制策略.首先利用一步模糊预测模型的结构分析得到其解析表达式,获得系统在k+1时刻的线性化预测模型;然后基于模糊线性化模型进行模型预... 针对暖通空调(HVAC)系统难以控制的问题,提出一种基于m ax-product推理的M am dan i模糊模型预测控制策略.首先利用一步模糊预测模型的结构分析得到其解析表达式,获得系统在k+1时刻的线性化预测模型;然后基于模糊线性化模型进行模型预测控制器设计.对HVAC系统的仿真和实验结果表明,该算法是一种跟踪性能好且鲁棒性强的有效控制算法. 展开更多
关键词 hvac系统 Mamdani模糊模型 预测控制 线性化
在线阅读 下载PDF
基于PSO算法的HVAC系统LSSVM预测控制 被引量:7
13
作者 邹木春 龙文 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期2642-2647,共6页
针对暖通空调(HVAC)系统,提出一种基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)的预测控制方法。该方法利用LSSVM建立HVAC系统预测模型并预测系统的输出值,引入输出反馈和偏差校正以克服模型失配等因素引起的预测误差,以此构造... 针对暖通空调(HVAC)系统,提出一种基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)的预测控制方法。该方法利用LSSVM建立HVAC系统预测模型并预测系统的输出值,引入输出反馈和偏差校正以克服模型失配等因素引起的预测误差,以此构造加权预测控制性能指标。由PSO算法滚动优化得到系统的最优控制量。利用该控制方法对一个HVAC系统进行仿真实验,结果表明该方法具有较好的控制效果。 展开更多
关键词 暖通空调系统 预测控制 最小二乘支持向量机 PSO算法
在线阅读 下载PDF
基于HVAC类负荷的电力系统动态调频控制策略 被引量:3
14
作者 郭炳庆 杨婧捷 +3 位作者 屈博 戚艳 刘幸蔚 王迎秋 《电力系统及其自动化学报》 CSCD 北大核心 2016年第11期65-69,共5页
以HVAC(暖通空调)类负荷为控制对象,提出了一种基于HVAC类负荷的电力系统动态调频控制策略。首先给出了HVAC负荷的等值热力学参数模型,分析了此类负荷的负荷特性;进而通过用户参与度建立HVAC负荷的温度设定值与系统频率波动之间的数学关... 以HVAC(暖通空调)类负荷为控制对象,提出了一种基于HVAC类负荷的电力系统动态调频控制策略。首先给出了HVAC负荷的等值热力学参数模型,分析了此类负荷的负荷特性;进而通过用户参与度建立HVAC负荷的温度设定值与系统频率波动之间的数学关系,给出了一种基于HVAC类负荷的电力系统动态调频控制策略,通过动态调整开关状态改变负荷功率,达到系统频率控制的目的。最后利用典型的单机电力系统模型验证了控制策略的有效性。 展开更多
关键词 暖通空调类负荷 动态调频 参与度 频率控制策略
在线阅读 下载PDF
新型模糊PID控制及在HVAC系统的应用 被引量:11
15
作者 吕红丽 段培永 +1 位作者 崔玉珍 贾磊 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第11期1277-1281,共5页
为了推广模糊控制器在非线性系统中的应用,提出一种利用PID控制器的参数优化和调节模糊控制器的新型设计方法.通过模糊控制器的结构分析建立与PID控制之间的精确解析关系之后提出基于PID控制增益因子的模糊控制器设计算法,然后利用改进... 为了推广模糊控制器在非线性系统中的应用,提出一种利用PID控制器的参数优化和调节模糊控制器的新型设计方法.通过模糊控制器的结构分析建立与PID控制之间的精确解析关系之后提出基于PID控制增益因子的模糊控制器设计算法,然后利用改进的变论域思想进一步优化模糊控制器设计参数.将其应用于暖通空调(HVAC)系统的节能控制中并与常规PID控制器相比较,仿真和实验结果表明这种模糊控制器具有超调量小、跟踪迅速、鲁棒性强等优越的控制性能. 展开更多
关键词 模糊控制 PID控制 结构分析 变论域 暖通空调系统
在线阅读 下载PDF
基于Jess的HVAC温度控制仿真系统 被引量:1
16
作者 陈宏希 《工业仪表与自动化装置》 2015年第6期122-125,共4页
针对HVAC的温度控制,设计HVAC温度控制仿真模型,在Eclipse软件平台上,运用Jess和Java语言,搭建温度控制仿真系统,编写基于规则的逻辑推理控制算法,实现HVAC楼层温度的仿真控制。具体仿真实验测试结果表明,该仿真系统的运行是正确和高效... 针对HVAC的温度控制,设计HVAC温度控制仿真模型,在Eclipse软件平台上,运用Jess和Java语言,搭建温度控制仿真系统,编写基于规则的逻辑推理控制算法,实现HVAC楼层温度的仿真控制。具体仿真实验测试结果表明,该仿真系统的运行是正确和高效的,对HVAC实际温度控制系统的开发有一定的参考价值。 展开更多
关键词 hvac JESS 规则 温度控制 仿真
在线阅读 下载PDF
基于S7-300的HVAC系统的研究与实现 被引量:1
17
作者 程镇 齐淑芳 +3 位作者 江用胜 汤继保 袁广超 崔哲 《制冷》 2010年第2期39-44,共6页
本文阐述了以西门子SIMATIC S7-300 PLC与上位机相结合的控制系统对HVAC系统自动控制功能的实现,从系统设备组成入手,介绍了压力控制和温度控制相结合的系统自动控制功能实现,同时详细阐述了以S7-300为核心控制单元的控制系统的硬件组... 本文阐述了以西门子SIMATIC S7-300 PLC与上位机相结合的控制系统对HVAC系统自动控制功能的实现,从系统设备组成入手,介绍了压力控制和温度控制相结合的系统自动控制功能实现,同时详细阐述了以S7-300为核心控制单元的控制系统的硬件组态过程、软件设计过程以及上位机监控的人机界面的设计过程的方案实现。依据该方案建立的某会展中心空调自控系统已投运,经实践验证,整个方案提高了HAVC系统的可靠性、适应性以及可维护性,实现了HVAC的节能增效,提升了HAVC系统的性能。 展开更多
关键词 S7—300PLC 控制原理 硬件设计 hvac
在线阅读 下载PDF
HVAC系统最优控制模型的开发及应用
18
作者 董超俊 刘贤坤 湛德照 《工业仪表与自动化装置》 2001年第4期26-29,14,共5页
对某一HVAC系统进行了实验 ,利用实验结果采用多变量自回归的方法开发了适用于HVAC系统控制的数学模型 ,该数学模型用于带有前馈补偿的线性二次高斯控制 (LQG) ,控制房间的温度和湿度 ,大大改善了控制性能 。
关键词 自回归模型 计算机仿真 hvac系统控制 线性二次高斯控制
在线阅读 下载PDF
基于HVACSIM+和MATLAB的空调系统仿真研究 被引量:2
19
作者 闫秀英 任庆昌 孟庆龙 《计算机工程与应用》 CSCD 2012年第15期227-232,共6页
研究了空调系统的仿真及一定温度要求下的最小能耗优化控制。介绍了大型空调系统仿真软件HVACSIM+;以某大厦一层中央空调系统的空气处理系统以及空调房间为仿真对象,进行HVACSIM+系统仿真;建立了表冷器的能耗与冷冻水流速之间的函数关系... 研究了空调系统的仿真及一定温度要求下的最小能耗优化控制。介绍了大型空调系统仿真软件HVACSIM+;以某大厦一层中央空调系统的空气处理系统以及空调房间为仿真对象,进行HVACSIM+系统仿真;建立了表冷器的能耗与冷冻水流速之间的函数关系,将此作为目标函数,在MATLAB环境下,应用改进的变量轮换法优化控制器参数,经HVACSIM+再次仿真运行,计算冷源向空调系统提供的能耗。仿真结果表明,优化参数下的仿真系统运行稳定,与优化前相比,经表冷器消耗的能量大大减少。 展开更多
关键词 暖通空调及其他系统仿真(hvacSIM+) 仿真器 优化控制 变量轮换法
在线阅读 下载PDF
HVAC系统的模糊预测函数控制器设计
20
作者 吕红丽 贾磊 +1 位作者 王雷 高瑞 《中国工程科学》 2006年第9期65-68,共4页
针对暖通空调HVAC系统中由于存在高度非线性、时变特征以及扰动和不确定性等因素而难以控制的特点,提出基于Takagi-Sugeno(T-S)模糊模型的预测函数控制器设计方法。该方法通过最小二乘辨识算法建立系统的模糊T-S模型,然后基于模糊全局... 针对暖通空调HVAC系统中由于存在高度非线性、时变特征以及扰动和不确定性等因素而难以控制的特点,提出基于Takagi-Sugeno(T-S)模糊模型的预测函数控制器设计方法。该方法通过最小二乘辨识算法建立系统的模糊T-S模型,然后基于模糊全局线性化预测模型,采用预测函数控制算法设计系统控制律。仿真实验结果表明该算法是一种跟踪性能好、鲁棒性强的有效控制方法。与常规的PID控制器相比,该方法具有超调量小、调整时间短等优良的动态性能。 展开更多
关键词 T-S模糊模型 预测函数控制 最小二乘算法 hvac系统
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部