期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Exact Boundary Controllability of Weak Solutions for a Kind of First Order Hyperbolic System——the HUM Method
1
作者 Xing LU Tatsien LI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2022年第1期1-16,共16页
The exact boundary controllability and the exact boundary observability for the 1-D first order linear hyperbolic system were studied by the constructive method in the framework of weak solutions in the work[Lu,X.and ... The exact boundary controllability and the exact boundary observability for the 1-D first order linear hyperbolic system were studied by the constructive method in the framework of weak solutions in the work[Lu,X.and Li,T.T.,Exact boundary con-trollability of weak solutions for a kind of first order hyperbolic system—the constructive method,Chin.Ann.Math.Ser.B,42(5),2021,643-676].In this paper,in order to study these problems from the viewpoint of duality,the authors establish a complete the-ory on the HUM method and give its applications to first order hyperbolic systems.Thus,a deeper relationship between the controllability and the observability can be revealed.Moreover,at the end of the paper,a comparison will be made between these two methods. 展开更多
关键词 First order linear hyperbolic system Exact boundary controllability The hum method
原文传递
阻尼波动方程的边界能控性(英文)
2
作者 孙波 宋梅 张月莲 《湖南文理学院学报(自然科学版)》 CAS 2008年第4期1-4,10,共5页
研究比较一般的阻尼波动方程:ψ″-△ψ+kψt=0.证明了无论阻尼系数多大皆可以通过控制边界上某一部分的振动过程使得整个区域内的波动系统在某种正则空间内从任意初始状态出发到达任意终止状态.证明过程主要思路是HUM方法,即先构造对... 研究比较一般的阻尼波动方程:ψ″-△ψ+kψt=0.证明了无论阻尼系数多大皆可以通过控制边界上某一部分的振动过程使得整个区域内的波动系统在某种正则空间内从任意初始状态出发到达任意终止状态.证明过程主要思路是HUM方法,即先构造对偶系统:φ″-△φ-kφt=0,并证明当时间足够长而阻尼充分小时其边界法向能观性,然后将其边界法向导数作为控制加在阻尼控制系统的边界上以实现其精确能控.最后还要采用时空伸缩变换方法将小阻尼下的结果推广到任意阻尼情形. 展开更多
关键词 阻尼波动方程 边界能控性 hum方法 时空变换方法
在线阅读 下载PDF
自然而特殊的声乐训练手段——哼鸣 被引量:1
3
作者 文小珍 《湘南学院学报》 2007年第3期79-80,95,共3页
哼鸣,是自然而特殊的声乐训练手段和声带保护的好方法,正确掌握好这门技巧,并把它正确地用于艺术歌唱当中,可以收到事半功倍的效果。指出了哼鸣在声乐训练中的重要作用,并从哼鸣的作用、哼鸣的分类、如何掌握正确的哼鸣方法以及哼鸣时... 哼鸣,是自然而特殊的声乐训练手段和声带保护的好方法,正确掌握好这门技巧,并把它正确地用于艺术歌唱当中,可以收到事半功倍的效果。指出了哼鸣在声乐训练中的重要作用,并从哼鸣的作用、哼鸣的分类、如何掌握正确的哼鸣方法以及哼鸣时需要注意的几个问题等方面进行了论述。 展开更多
关键词 声乐训练手段 哼鸣 作用 方法
在线阅读 下载PDF
具时变系数波动方程的半内严格控制
4
作者 黄永忠 《四川师范学院学报(自然科学版)》 1997年第3期256-259,共4页
证明了一个具时变系数的波动方程的半内严格可控性,所使用的基本方法是Hilbert唯一性方法(HUM).
关键词 波动方程 半内严格可控 hum 变系数
在线阅读 下载PDF
Exact Controllability for the Fourth Order Schrdinger Equation 被引量:1
5
作者 Chuang ZHENG Zhongcheng ZHOU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第3期395-404,共10页
The boundary controllability of the fourth order Schr5dinger equation in a bounded domain is studied. By means of an L2-Neumann boundary control, the authors prove that the solution is exactly controllable in H-2(12... The boundary controllability of the fourth order Schr5dinger equation in a bounded domain is studied. By means of an L2-Neumann boundary control, the authors prove that the solution is exactly controllable in H-2(12) for an arbitrarily small time. The method of proof combines both the HUM (Hilbert Uniqueness Method) and multiplier techniques. 展开更多
关键词 Fourth order Schroedinger equation hum method CONTROLLABILITY MULTIPLIER
原文传递
Exact Boundary Synchronization by Groups for a Kind of System of Wave Equations Coupled with Velocities
6
作者 Xing LU Tatsien LI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2023年第1期17-34,共18页
This paper deals with the exact boundary controllability and the exact boundary synchronization for a 1-D system of wave equations coupled with velocities.These problems can not be solved directly by the usual HUM met... This paper deals with the exact boundary controllability and the exact boundary synchronization for a 1-D system of wave equations coupled with velocities.These problems can not be solved directly by the usual HUM method for wave equations,however,by transforming the system into a first order hyperbolic system,the HUM method for 1-D first order hyperbolic systems,established by Li-Lu(2022)and Lu-Li(2022),can be applied to get the corresponding results. 展开更多
关键词 Exact boundary controllability Exact boundary synchronization Coupled system of wave equations hum method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部