By using the high-resolution GAME reanalysis data, the heat and moisture budgets during the period of HUBEX/GAME in the summer of 1998 are calculated for exploring the thermodynamic features of Meiyu over the Changjia...By using the high-resolution GAME reanalysis data, the heat and moisture budgets during the period of HUBEX/GAME in the summer of 1998 are calculated for exploring the thermodynamic features of Meiyu over the Changjiang-Huaihe (CH) valley. During the CH Meiyu period, an intensive vertically-integrated heat source and moisture sink are predominant over the heavy rainfall area of the CH valley, accompanied by strong upward motion at 500 hPa. The heat and moisture budgets show that the main diabatic heating component is condensation latent heat released by rainfall. As residual terms, the evaporation and sensible heating are relatively small. Based on the vertical distribution of the heat source and moisture sink, the nature of the rainfall is mixed, in which the convective rainfall is dominant with a considerable percentage of continuous stratiform rainfall. There are similar time evolutions of the main physical parameters (〈Q <SUB>1</SUB>〉, 〈Q <SUB>2</SUB>〉, and vertical motion ω at 500 hPa). The time variations of 〈Q <SUB>1</SUB>〉 and 〈Q <SUB>2</SUB>〉 are in phase with those of −ω <SUB>500</SUB>, and have their main peaks within the CH Meiyu period. This shows the influence of the heat source on the dynamic structure of the atmosphere. The wavelet analyses of those time series display similar multiple timescale characteristics. During the CH Meiyu period, both the synoptic scale(∼6 days) and mesoscale (∼2 days and ∼12 hours) increase obviously and cause heavy rainfall as well as the appearances of the maxima of the main physical parameters. Among them, the mesoscale systems are the main factors.展开更多
In different synoptic conditions and at different time scales,the analysis of the energy budgets by Bowen Ratio Method and Bulk Schemes over Huaihe River Basin during the field observation periods of HUBEX in 1999 sho...In different synoptic conditions and at different time scales,the analysis of the energy budgets by Bowen Ratio Method and Bulk Schemes over Huaihe River Basin during the field observation periods of HUBEX in 1999 shows that,(1)the averaged latent heat flux is an order of magnitude more than the averaged sensible heat flux during the observation period:(2)the variation of total cloud amount is out of phase with the terms of energy budgets except for the downward longwave radiation which maybe is related to the cloud's height and class:(3)the values of sensible and latent heat fluxes are small during rain episodes,but thereafter,the values become high and then up to maximum.It is similar to the other terms of the energy budgets except for the downward longwave radiation.The diurnal variation of energy budgets indicates that the daytime precipitation exerts great influence to the energy budgets,but the nighttime precipitation makes little influence; (4)the variation of the latent heat flux is in phase with the evaporation,which indicates that the latent heat flux calculated by bulk schemes is reliable:(5)the means of the sensible and latent heat flux and momentum flux by bulk schemes for the time period from May to August are, respectively,30.71W/m^2.116.81W/m^2.2.86×10^(-2)N/m^2 in 1998 and 30.28W/m^2,107.35 W/m^2,2.74×10^(-2)N/m^2 in 1999.The values of these two years are similar.During summer in 1999 the magnitude and activity of sensible heat flux are strongest in June and those of the latent heat flux are in August.展开更多
In the summers of 1998 and 1999, Chinese and Japanese scientists cooperatively conducted the first large-scale energy and water cycle experiment(WCRP/GEWEX/GAME/HUBEX: World Climate Research Program/Global Energy and ...In the summers of 1998 and 1999, Chinese and Japanese scientists cooperatively conducted the first large-scale energy and water cycle experiment(WCRP/GEWEX/GAME/HUBEX: World Climate Research Program/Global Energy and Water Cycle Experiment/Asian Monsoon Experiment/Huaihe River Basin Energy and Water Cycle Experiment) in the Huaihe River basin, Anhui Province of China. The main objective of this field experiment(HUBEX)was to investigate the multiple-scale structure characteristics, life cycles, and genesis and development mechanisms of the Meiyu system in East Asia as well as the cause of related flooding disasters. It was a joint China-Japan cooperative meteorological and hydrological observation experiment. On the basis of intensive observations, scientists from the two countries conducted follow-up investigations through collating and compiling data and performing scientific analysis during the following five years. It can be concluded that the HUBEX project has yielded comprehensive and remarkable achievements. This paper introduces the major scientific results derived from this field experiment and the ensuing investigations, and reassesses their merits and shortages for the purpose of providing useful experience and proposing new research targets as well as prospects for the initiation of a new joint scientific Meiyu experiment in the middle and lower Yangtze River basin.展开更多
淮河流域是中国南北气候重要的过渡带,气象灾害频繁发生。这里水网、农田、丘陵、山地、城镇密布,地-气作用复杂,干冷与暖湿空气时常交汇于此,造成局地或流域旱涝经常发生。淮河流域处于梅雨区,且是中国重要的农业生产基地,具有气象和...淮河流域是中国南北气候重要的过渡带,气象灾害频繁发生。这里水网、农田、丘陵、山地、城镇密布,地-气作用复杂,干冷与暖湿空气时常交汇于此,造成局地或流域旱涝经常发生。淮河流域处于梅雨区,且是中国重要的农业生产基地,具有气象和水文综合观测系统,积累了长序列的气象和水文观测资料。因此,淮河流域是研究能量和水分循环的理想试验区。国家自然科学基金重大项目"淮河流域能量与水分循环试验和研究(HUaihe river Basin Experiment,简称HUBEX)"于1998、1999年夏在淮河流域开展了气象和水文联合观测试验。文中回顾了HUBEX试验的目的、观测网设计与布局,介绍了HUBEX推动下的淮河流域综合观测网的发展,总结了HUBEX观测试验对区域气候事件和暴雨等灾害性天气机理研究、提高模式模拟和预报能力及建立长期连续的气象观测数据集等方面的成果和作用。展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant No. 497914030.
文摘By using the high-resolution GAME reanalysis data, the heat and moisture budgets during the period of HUBEX/GAME in the summer of 1998 are calculated for exploring the thermodynamic features of Meiyu over the Changjiang-Huaihe (CH) valley. During the CH Meiyu period, an intensive vertically-integrated heat source and moisture sink are predominant over the heavy rainfall area of the CH valley, accompanied by strong upward motion at 500 hPa. The heat and moisture budgets show that the main diabatic heating component is condensation latent heat released by rainfall. As residual terms, the evaporation and sensible heating are relatively small. Based on the vertical distribution of the heat source and moisture sink, the nature of the rainfall is mixed, in which the convective rainfall is dominant with a considerable percentage of continuous stratiform rainfall. There are similar time evolutions of the main physical parameters (〈Q <SUB>1</SUB>〉, 〈Q <SUB>2</SUB>〉, and vertical motion ω at 500 hPa). The time variations of 〈Q <SUB>1</SUB>〉 and 〈Q <SUB>2</SUB>〉 are in phase with those of −ω <SUB>500</SUB>, and have their main peaks within the CH Meiyu period. This shows the influence of the heat source on the dynamic structure of the atmosphere. The wavelet analyses of those time series display similar multiple timescale characteristics. During the CH Meiyu period, both the synoptic scale(∼6 days) and mesoscale (∼2 days and ∼12 hours) increase obviously and cause heavy rainfall as well as the appearances of the maxima of the main physical parameters. Among them, the mesoscale systems are the main factors.
基金the National Natural Science Foundation of China(No.49794030).
文摘In different synoptic conditions and at different time scales,the analysis of the energy budgets by Bowen Ratio Method and Bulk Schemes over Huaihe River Basin during the field observation periods of HUBEX in 1999 shows that,(1)the averaged latent heat flux is an order of magnitude more than the averaged sensible heat flux during the observation period:(2)the variation of total cloud amount is out of phase with the terms of energy budgets except for the downward longwave radiation which maybe is related to the cloud's height and class:(3)the values of sensible and latent heat fluxes are small during rain episodes,but thereafter,the values become high and then up to maximum.It is similar to the other terms of the energy budgets except for the downward longwave radiation.The diurnal variation of energy budgets indicates that the daytime precipitation exerts great influence to the energy budgets,but the nighttime precipitation makes little influence; (4)the variation of the latent heat flux is in phase with the evaporation,which indicates that the latent heat flux calculated by bulk schemes is reliable:(5)the means of the sensible and latent heat flux and momentum flux by bulk schemes for the time period from May to August are, respectively,30.71W/m^2.116.81W/m^2.2.86×10^(-2)N/m^2 in 1998 and 30.28W/m^2,107.35 W/m^2,2.74×10^(-2)N/m^2 in 1999.The values of these two years are similar.During summer in 1999 the magnitude and activity of sensible heat flux are strongest in June and those of the latent heat flux are in August.
基金Supported by the Special Strategic Project of Leading Science and Technology of Chinese Academy of Sciences(XDA20100304)National Natural Science Foundation of China(41790471)。
文摘In the summers of 1998 and 1999, Chinese and Japanese scientists cooperatively conducted the first large-scale energy and water cycle experiment(WCRP/GEWEX/GAME/HUBEX: World Climate Research Program/Global Energy and Water Cycle Experiment/Asian Monsoon Experiment/Huaihe River Basin Energy and Water Cycle Experiment) in the Huaihe River basin, Anhui Province of China. The main objective of this field experiment(HUBEX)was to investigate the multiple-scale structure characteristics, life cycles, and genesis and development mechanisms of the Meiyu system in East Asia as well as the cause of related flooding disasters. It was a joint China-Japan cooperative meteorological and hydrological observation experiment. On the basis of intensive observations, scientists from the two countries conducted follow-up investigations through collating and compiling data and performing scientific analysis during the following five years. It can be concluded that the HUBEX project has yielded comprehensive and remarkable achievements. This paper introduces the major scientific results derived from this field experiment and the ensuing investigations, and reassesses their merits and shortages for the purpose of providing useful experience and proposing new research targets as well as prospects for the initiation of a new joint scientific Meiyu experiment in the middle and lower Yangtze River basin.
文摘淮河流域是中国南北气候重要的过渡带,气象灾害频繁发生。这里水网、农田、丘陵、山地、城镇密布,地-气作用复杂,干冷与暖湿空气时常交汇于此,造成局地或流域旱涝经常发生。淮河流域处于梅雨区,且是中国重要的农业生产基地,具有气象和水文综合观测系统,积累了长序列的气象和水文观测资料。因此,淮河流域是研究能量和水分循环的理想试验区。国家自然科学基金重大项目"淮河流域能量与水分循环试验和研究(HUaihe river Basin Experiment,简称HUBEX)"于1998、1999年夏在淮河流域开展了气象和水文联合观测试验。文中回顾了HUBEX试验的目的、观测网设计与布局,介绍了HUBEX推动下的淮河流域综合观测网的发展,总结了HUBEX观测试验对区域气候事件和暴雨等灾害性天气机理研究、提高模式模拟和预报能力及建立长期连续的气象观测数据集等方面的成果和作用。