A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling t...A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.展开更多
目的:分析萝藦种子中脂肪油和挥发油成分。方法:采用气相色谱-质谱联用法(GC-MS)分析萝藦种子中脂肪油和挥发油成分:色谱柱为HP-5MS石英弹性毛细管柱,载气为高纯氮气,流速为1 m L/min,进样口温度为220℃,色谱柱初始温度为120℃(程序升...目的:分析萝藦种子中脂肪油和挥发油成分。方法:采用气相色谱-质谱联用法(GC-MS)分析萝藦种子中脂肪油和挥发油成分:色谱柱为HP-5MS石英弹性毛细管柱,载气为高纯氮气,流速为1 m L/min,进样口温度为220℃,色谱柱初始温度为120℃(程序升温),柱压为80 k Pa,分流进样,分流比为20∶1,进样量为1μL;质谱条件:离子源为电子轰击离子源,电子能量为70e V,接口温度为250℃,质量扫描范围为m/z 50~550,扫描间歇为1.0 s。采用顶空气相色谱-质谱联用法(HSGC-MS)分析炒制前后萝藦种子挥发油成分的差异:色谱柱为HP-5MS石英弹性毛细管柱,载气为高纯氮气,流速为1 m L/min,顶空加热温度为90℃,加热时间为30 min,色谱柱初始温度为80℃(程序升温),柱压为80 k Pa,分流进样,分流比为20∶1,进样量为1μL;质谱条件:离子源为电子轰击离子源,电子能量为70 e V,接口温度为210℃,质量扫描范围为m/z 50~550,扫描间歇为1.0 s。结果:从脂肪油中共鉴定出30个成分,其中亚油酸、油酸、棕榈油酸相对含量较高;从挥发油中共鉴定出54个成分,主要为萜烯类成分,其中衣兰油二烯、罗汉柏烯、脱氢香橙烯相对含量较高。炒制后多检测出4-萜烯醇,且二氢香芹醇相对含量较炒制前增加了1倍。结论:该研究基本明确了萝藦种子脂肪油和挥发油主要成分;炒制前后萝藦种子挥发油成分存在一定差异。展开更多
基金supported by the Natural Science Foundation of China(NSFC Grant No.20803064)the Natural Science Foundation of Zhejiang Provence(Y4090348 and LY12B03007)Qianjiang Talent Project in Zhejiang Province(2010R10039 and 2013R10056)
文摘A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.
文摘目的:分析萝藦种子中脂肪油和挥发油成分。方法:采用气相色谱-质谱联用法(GC-MS)分析萝藦种子中脂肪油和挥发油成分:色谱柱为HP-5MS石英弹性毛细管柱,载气为高纯氮气,流速为1 m L/min,进样口温度为220℃,色谱柱初始温度为120℃(程序升温),柱压为80 k Pa,分流进样,分流比为20∶1,进样量为1μL;质谱条件:离子源为电子轰击离子源,电子能量为70e V,接口温度为250℃,质量扫描范围为m/z 50~550,扫描间歇为1.0 s。采用顶空气相色谱-质谱联用法(HSGC-MS)分析炒制前后萝藦种子挥发油成分的差异:色谱柱为HP-5MS石英弹性毛细管柱,载气为高纯氮气,流速为1 m L/min,顶空加热温度为90℃,加热时间为30 min,色谱柱初始温度为80℃(程序升温),柱压为80 k Pa,分流进样,分流比为20∶1,进样量为1μL;质谱条件:离子源为电子轰击离子源,电子能量为70 e V,接口温度为210℃,质量扫描范围为m/z 50~550,扫描间歇为1.0 s。结果:从脂肪油中共鉴定出30个成分,其中亚油酸、油酸、棕榈油酸相对含量较高;从挥发油中共鉴定出54个成分,主要为萜烯类成分,其中衣兰油二烯、罗汉柏烯、脱氢香橙烯相对含量较高。炒制后多检测出4-萜烯醇,且二氢香芹醇相对含量较炒制前增加了1倍。结论:该研究基本明确了萝藦种子脂肪油和挥发油主要成分;炒制前后萝藦种子挥发油成分存在一定差异。