期刊文献+
共找到8,581篇文章
< 1 2 250 >
每页显示 20 50 100
HPL-CS温敏凝胶促高原糖尿病大鼠难愈性创面愈合的研究
1
作者 王辉 赵琴 +3 位作者 陈立力 黄永莉 张进进 邢颜超 《临床输血与检验》 2025年第4期433-441,共9页
目的本研究旨在探讨负载人血小板裂解液(HPL)的壳聚糖(CS)温敏凝胶的制备,并在高原糖尿病大鼠难愈性创面中验证其修复作用。方法调整CS和HPL的比例,通过表观和电镜观察确定HPL-CS温敏凝胶的最佳制备条件,并在不同温度下观察凝胶形成情... 目的本研究旨在探讨负载人血小板裂解液(HPL)的壳聚糖(CS)温敏凝胶的制备,并在高原糖尿病大鼠难愈性创面中验证其修复作用。方法调整CS和HPL的比例,通过表观和电镜观察确定HPL-CS温敏凝胶的最佳制备条件,并在不同温度下观察凝胶形成情况。将SD大鼠均分为平原组和高原组后,再随机分为对照组、模型组、CS组和HPL-CS组。对照组无处理,模型组仅患糖尿病,CS组用CS凝胶每日涂抹创面,HPL-CS组用HPL-CS温敏凝胶每日涂抹创面。比较第0、3、7、14、21天各组的创面愈合情况,并在第7、14、21天取材做苏木精-伊红染色(H&E)和Masson染色。结果HPL∶CS=1∶1是制备HPL-CS凝胶的最佳比例;HPL-CS温敏凝胶在37℃形成凝胶,恢复至22℃时液体析出,但不能完全恢复液体状态;无论平原组还是高原组,HPL-CS组创面愈合率在各个时间点都高于模型组和CS组;病理显示,HPL-CS组相较于其他组炎症细胞减少、上皮细胞增生、胶原纤维排列紧密、出现大量新生血管。结论HPL-CS温敏凝胶显著提升了高原环境下糖尿病难愈性创面的修复效果。 展开更多
关键词 hpl-cs凝胶 糖尿病难愈性创面 高原环境 温敏性 生长因子
暂未订购
Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel 被引量:1
2
作者 Lou Zhang Shuo Li +4 位作者 Fu Tang Jingkai Zhang Yuetong Kang Hean Zhang Lidong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期504-514,共11页
Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are... Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings. 展开更多
关键词 silver nanoparticles hydrogel STRAW extraction ANTIBACTERIAL
在线阅读 下载PDF
A Multifunctional Hydrogel with Multimodal Self-Powered Sensing Capability and Stable Direct Current Output for Outdoor Plant Monitoring Systems 被引量:2
3
作者 Xinge Guo Luwei Wang +1 位作者 Zhenyang Jin Chengkuo Lee 《Nano-Micro Letters》 2025年第4期1-24,共24页
Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management... Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management.Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources,low durability under harsh conditions,non-transparent or non-biocompatible materials,and complex structures.Herein,a multifunctional hydrogel is developed,which can fulfill all the above requirements and build selfsustainable outdoor monitoring systems solely by it.It can serve as a stable energy harvester that continuously generates direct current output with an average power density of 1.9 W m^(-3)for nearly 60 days of operation in normal environments(24℃,60%RH),with an energy density of around 1.36×10^(7)J m^(-3).It also shows good self-recoverability in severe environments(45℃,30%RH)in nearly 40 days of continuous operation.Moreover,this hydrogel enables noninvasive and self-powered monitoring of leaf relative water content,providing critical data on evaluating plant health,previously obtainable only through invasive or high-power consumption methods.Its potential extends to acting as other self-powered environmental sensors.This multifunctional hydrogel enables self-sustainable outdoor systems with scalable and low-cost production,paving the way for future agriculture. 展开更多
关键词 Self-powered sensor hydrogel Energy harvester Outdoor farming Self-sustainable IoT
在线阅读 下载PDF
Bioinspired smart dual-layer hydrogels system with synchronous solar and thermal radiation modulation for energy-saving all-season temperature regulation 被引量:1
4
作者 Meng-Chen Huang Chao-Hua Xue +8 位作者 Zhongxue Bai Jun Cheng Yong-Gang Wu Chao-Qun Ma Li Wan Long Xie Hui-Di Wang Bing-Ying Liu Xiao-Jing Guo 《Journal of Energy Chemistry》 2025年第2期175-190,I0005,共17页
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management... All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons. 展开更多
关键词 Thermochromic hydrogel Self-adaptive thermal management Radiative cooling Spectral modulation ENERGY-SAVING
在线阅读 下载PDF
Modulus self-adaptive hydrogel optical fiber for long-term modulation of neural activity 被引量:1
5
作者 Guoyin Chen Siming Xu +6 位作者 Zeqi Zhang Ying Guo Jiahao Zheng Jialei Yang Jie Pan Kai Hou Meifang Zhu 《Chinese Chemical Letters》 2025年第7期425-429,共5页
Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues a... Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy. 展开更多
关键词 hydrogel optical fibers OPTOGENETICS Neural interfaces Variable modulus BIOCOMPATIBILITY
原文传递
“Tennis racket”hydrogel electrolytes to synchronously regulate cathode and anode of zinc-iodine batteries 被引量:1
6
作者 Tian-Yi Yang Ting-Ting Su +3 位作者 Hai-Long Wang Kun Li Wen-Feng Ren Run-Cang Sun 《Journal of Energy Chemistry》 2025年第3期454-462,共9页
Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyio... Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries. 展开更多
关键词 Tennis racket hydrogele lectrolyte Interface regulation Zinc anode Zinc-iodide batteries
在线阅读 下载PDF
Water-Restrained Hydrogel Electrolytes with Repulsion-Driven Cationic Express Pathways for Durable Zinc-Ion Batteries 被引量:1
7
作者 Dewu Lin Yushuang Lin +10 位作者 Ruihong Pan Jiapei Li Anquan Zhu Tian Zhang Kai Liu Dongyu Feng Kunlun Liu Yin Zhou Chengkai Yang Guo Hong Wenjun Zhang 《Nano-Micro Letters》 2025年第8期320-332,共13页
The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we desig... The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs.The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn^(2+)transport through an ionic repulsion mechanism,achieving simultaneously high Zn^(2+)transference number(0.79)and high ionic conductivity(28.7 mS cm−1).Additionally,the reactivity of water in the PAPTMA hydrogels is significantly inhibited,thus possessing a strong resistance to parasitic reactions.Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA.Leveraging these properties,symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm^(−2) and maintain stable operation for 1000 h with a discharge of depth of 71%.When applied in 4×4 cm2 pouch cells with MnO_(2) as the cathode material,the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles.This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity,enhanced Zn^(2+)mobility,and strong resistance to parasitic reactions,paving the way for long-lasting flexible ZIBs. 展开更多
关键词 Zinc-ion battery hydrogel electrolyte Cation conduction Ionic repulsion Water state
在线阅读 下载PDF
Hydrogel Electrolytes-Based Rechargeable Zinc-Ion Batteries under Harsh Conditions 被引量:1
8
作者 Zhaoxi Shen Zicheng Zhai +6 位作者 Yu Liu Xuewei Bao Yuechong Zhu Tong Zhang Linsen Li Guo Hong Ning Zhang 《Nano-Micro Letters》 2025年第10期14-48,共35页
Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environme... Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined. 展开更多
关键词 hydrogel electrolytes Rechargeable zinc-ion batteries Harsh conditions Design strategies Energy storage
在线阅读 下载PDF
Laser‑Induced Highly Stable Conductive Hydrogels for Robust Bioelectronics
9
作者 Yibo Li Hao Zhou +1 位作者 Huayong Yang Kaichen Xu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期117-120,共4页
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H... Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1) with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics. 展开更多
关键词 Laser processing Conductive hydrogels Stable interface Bio-interfacing electrodes Bioelectronic application
在线阅读 下载PDF
Recent Strategies and Advances in Hydrogel‑Based Delivery Platforms for Bone Regeneration
10
作者 Xiao Wang Jia Zeng +4 位作者 Donglin Gan Kun Ling Mingfang He Jianshu Li Yongping Lu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期389-439,共51页
Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive mol... Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo.Hydrogels have emerged as ideal carriers to address these challenges,offering the potential to prolong retention times at lesion sites,extend half-lives in vivo and mitigate side effects,avoid burst release,and promote adsorption under physiological conditions.This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration,encompassing applications in cranial defect repair,femoral defect repair,periodontal bone regeneration,and bone regeneration with underlying diseases.Additionally,this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery,carrier-assisted delivery,and sequential delivery.Finally,this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration. 展开更多
关键词 hydrogel Bone regeneration Bioactive molecules Drug delivery Nano-/microscale carriers
在线阅读 下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
11
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
Applications and Research Progress of Multifunctional Hydrogels in Periodontal Tissue Regeneration
12
作者 Ying Wen Siyun Zhang Wu Zhang 《Journal of Biosciences and Medicines》 2025年第2期107-121,共15页
Hydrogels, as a novel class of biomaterials, exhibit broad application prospects and are widely used in tissue engineering. In the field of periodontology within dental medicine, hydrogels can be employed for periodon... Hydrogels, as a novel class of biomaterials, exhibit broad application prospects and are widely used in tissue engineering. In the field of periodontology within dental medicine, hydrogels can be employed for periodontal tissue regeneration to repair the damage caused by periodontitis. At present, various hydrogels have been developed to control periodontal inflammation and repair periodontal tissues. This article, based on domestic and international literature, provides a brief review of hydrogels used in periodontal tissue regeneration. 展开更多
关键词 hydrogel Periodontal Tissue Regeneration Scaffold Material Bone Defect Repair
在线阅读 下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
13
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
暂未订购
An Antimicrobial and Antioxidant Hydrogel Dressing for Wound Repair
14
作者 Xiaochun Liu Hui Zhang +1 位作者 Dawei Sun Lei Xu 《Health》 2025年第2期98-110,共13页
The management of chronic wounds remains a substantial challenge for healthcare providers. Inadequate wound care can result in serious complications, including infection, which may ultimately lead to amputation or eve... The management of chronic wounds remains a substantial challenge for healthcare providers. Inadequate wound care can result in serious complications, including infection, which may ultimately lead to amputation or even death. While traditional excipients exhibit some efficacy in promoting wound healing, they are not sufficiently effective in preventing wound infections. As an antimicrobial metal, copper has a long history in the antimicrobial field, and at the same time, wound auxiliaries with copper ions have also been used in the treatment of chronic wounds. To address the limitations of conventional wound dressings, including insufficient antimicrobial properties and limited capacity to promote wound healing, this study introduces a highly adhesive hydrogel with superior mechanical stability for non-invasive wound treatment. The hydrogel was composed of carboxymethyl chitosan, tannic acid and copper ions. The tannic acid solution was subjected to dropwise addition of CuCl2 solution to produce precipitation, and tannic acid/copper ions (TA/Cu2+) composite nanoparticles were prepared. Through topological adhesion, the CMCS with pH sensitivity has the ability to establish adhesive connections with a wide range of materials. The benefits of CMCS/TA/Cu2+ hydrogel, as a kind of wound closure and repair material, include efficient wound closure, and resistance against bacterial invasion while maintaining cleanliness. Additionally, it exhibits excellent tensile and mechanical stability that can facilitate effective closure and repair in dynamic areas like joint wounds. This promising hydrogel adhesive has demonstrated potential as a material for wound closure and restoration. 展开更多
关键词 Carboxymethyl Chitosan/Tannins/Copper Ions hydrogel Excipients Chronic Wounds
在线阅读 下载PDF
Hydrogel fabrication techniques for advanced artificial sensory systems
15
作者 Wonhee Gong Jeongyeon Kim +4 位作者 Chaeyoon Kim Hyewon Chang Yejin Ahn David V Schaffer Jieung Baek 《International Journal of Extreme Manufacturing》 2025年第6期28-61,共34页
Artificial sensory systems,designed to emulate human senses like sight,touch,and hearing,have garnered significant attention for their potential to enhance human capabilities,improve human-machine interactions,and ena... Artificial sensory systems,designed to emulate human senses like sight,touch,and hearing,have garnered significant attention for their potential to enhance human capabilities,improve human-machine interactions,and enable autonomous systems to better perceive their surroundings.Hydrogels,with their biocompatibility,flexibility,and water-rich polymer structure,are increasingly recognized as crucial materials in the development of these systems,especially in applications such as wearable sensors,artificial skin,and neural interfaces.This review explores various hydrogel fabrication techniques,including 3D bioprinting,electro spinning,and photopolymerization,which allow for the precise control of hydrogel properties like mechanical strength,flexibility,and conductivity.By tailoring these properties to mimic natural tissues,hydrogels offer transformative benefits in the creation of advanced,biocompatible,and durable sensory systems.We emphasize the importance of selecting appropriate fabrication methods to meet the specific functional requirements of artificial sensory applications,such as sensitivity to stimuli,durability,and ease of integration.This review further highlights the pivotal role of hydrogels in advancing future artificial sensory technologies and their broad potential in fields ranging from robotics to biomedical devices. 展开更多
关键词 hydrogel artificial sensory systems PHOTO-CROSSLINKING 3D bioprinting ELECTROSPINNING smart hydrogels
在线阅读 下载PDF
Electrically conductive“SMART”hydrogels for on-demand drug delivery
16
作者 Soumajyoti Ghosh Nikhil Kumar Santanu Chattopadhyay 《Asian Journal of Pharmaceutical Sciences》 2025年第1期26-47,共22页
In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typica... In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typically exhibit poor conductivity due to their hydrophilic polymer structure.Electrical conductivity provides an important enhancement to the properties of hydrogel-based systems in various biomedical applications such as drug delivery and tissue engineering.Consequently,researchers are developing combinatorial strategies to develop electrically responsive“SMART”systems to improve the therapeutic efficacy of biomolecules.Electrically conductive hydrogels have been explored for various drug delivery applications,enabling higher loading of therapeutic cargo with on-demand delivery.This review emphasizes the properties,mechanisms,fabrication techniques and recent advancements of electrically responsive“SMART”systems aiding on-site drug delivery applications.Additionally,it covers prospects for the successful translation of these systems into clinical research. 展开更多
关键词 hydrogelS Conductive polymers Electrically conductive hydrogels On-demand drug delivery
暂未订购
Liquid Crystalline Hydrogel Capable of Thermally-induced Dual Actuation
17
作者 Yi-Ming Chen Yue Zhao 《Chinese Journal of Polymer Science》 2025年第4期563-571,共9页
Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and act... Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and actuation behaviors have been obtained in either hydrogels or LCEs,they typically undergo reversible shape change only once(e.g.,one expansion plus one contraction)during one heating/cooling cycle.Herein,we report a study of a novel liquid crystalline hydrogel(LCH)and the achievement of dual actuation in a single heating/cooling cycle by integrating the characteristics of thermoresponsive hydrogel and LCE.The dual actuation behavior arises from the reversible volume phase transition of poly(N-isopropylacrylamide)(PNIPAM)and the reversible order-disorder phase transition of LC mesogens in the LCH.Due to a temperature window separating the two transitions belonging to PNIPAM and LCE,LCH actuator can sequentially execute their respective actuation,thus deforming reversibly twice,during a heating/cooling cycle.The relative actuation degree of the two mechanisms is influenced by the mass ratio of PNIPAM to LCE in the LCH.Moreover,the initial shape of a bilayer actuator made with an active LCH layer and a passive polymer layer can be altered through hydration or dehydration of PNIPAM,which further modifies the dual actuation induced deformation.This work provides an example that shows the interest of developing LCH actuators. 展开更多
关键词 Liquid crystalline hydrogel Dual actuation Thermoresponsive hydrogel Liquid crystal elastomer
原文传递
Engineering living root with mechanical stimulation derived from reciprocating compression in a double network hydrogel as elastic soil
18
作者 Qiye Wu Jinchun Xie +1 位作者 Junfu Li Yongjun Men 《Advanced Agrochem》 2025年第2期123-131,共9页
The root system actively reacts to mechanical stimuli in its environment,transmitting mechanical signals to optimize the utilization of environmental resources.While the mechanical impedance created by the growth medi... The root system actively reacts to mechanical stimuli in its environment,transmitting mechanical signals to optimize the utilization of environmental resources.While the mechanical impedance created by the growth medium serves as the primary source of stimulation for the roots,extensive research has focused on the roots'response to static mechanical stimulation.However,the impact of dynamic mechanical stimulation on root phenotype remains underexplored.In this study,we utilized a low acyl gellan gum/polyacrylamide(GG/PAM)double network elastic hydrogel as the growth medium for rapeseed.We constructed a mechanical device to investigate the effects of reciprocating extrusion stimulation on the growth of the rapeseed root system.After three weeks of mechanical stimulation,the root system exhibited a significant increase in lateral roots.This branching enhanced the roots'anchoring and penetration into the hydrogel,thereby improving the root system's adaptability to its environment.Our findings offer valuable data and insights into the effects of reciprocating mechanical stimulation on root growth,providing a new way for engineering root phenotype. 展开更多
关键词 Mechanical stimulation hydrogel medium Double network hydrogel Root phenotype Rapeseed growth Elastic soil
在线阅读 下载PDF
Highly Transparent PVA Hydrogel with Enhanced Mechanical Properties and Electrical Conductivity by Doping with Cyclohexane-1,2,3,4,5,6-Hexacarboxylic Acid
19
作者 GAO Hu YANG Fangqiang +5 位作者 JIN Fei GE Hongliang ZHU Xianjun WU Qiong WANG Ying YANG Hua 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期338-343,共6页
Polyvinyl alcohol(PVA)hydrogels doped with cyclohexane-1,2,3,4,5,6-hexacarboxylic acid(CHA)were successfully prepared during drying and swelling.Structural and morphological characterizations suggest the carboxyl and ... Polyvinyl alcohol(PVA)hydrogels doped with cyclohexane-1,2,3,4,5,6-hexacarboxylic acid(CHA)were successfully prepared during drying and swelling.Structural and morphological characterizations suggest the carboxyl and hydroxyl groups in the material undergo esterification during the preparation of the material,which contributes to the high transparency with 90%transmittance in the 400 to 800 nm range and robust mechanical properties of the material with a tensile strength at a break of 27.55 MPa.It is noteworthy that the bending and torsion angles exhibit a strong linear correlation with electrical resistance,enabling the monitoring of the bending motion state of each human body segment. 展开更多
关键词 hydrogel CONDUCTIVITY strain sensor
原文传递
Bionic Hydrogel-based Stretchable Devices for Bioelectronics Applications
20
作者 Yitao Zhang Yiqing Yuan +2 位作者 Haiyang Duan Pengcheng Zhu Yanchao Mao 《Journal of Bionic Engineering》 2025年第3期982-1013,共32页
Bionic hydrogels offer significant advantages over conventional counterparts,boasting superior properties like enhanced adhesion,stretchability,conductivity,biocompatibility and versatile functionalities.Their physico... Bionic hydrogels offer significant advantages over conventional counterparts,boasting superior properties like enhanced adhesion,stretchability,conductivity,biocompatibility and versatile functionalities.Their physicochemical resemblance to biological tissues makes bionic hydrogels ideal interfaces for bioelectronic devices.In contrast,conventional hydrogels often exhibit inadequate performance,such as easy detachment,lack of good skin compliance,and inadequate conductivity,failing to meet the rigorous demands of bioelectronic applications.Bionic hydrogels,inspired by biological designs,exhibit exceptional physicochemical characteristics that fulfill diverse criteria for bioelectronic applications,driving the advancement of bioelectronic devices.This review first introduces a variety of materials used in the fabrication of bionic hydrogels,including natural polymers,synthetic polymers,and other materials.Then different mechanisms of hydrogel bionics,are categorized into material bionics,structural bionics,and functional bionics based on their bionic approaches.Subsequently,various applications of bionic hydrogels in the field of bioelectronics were introduced,including physiological signal monitoring,tissue engineering,and human-machine interactions.Lastly,the current development and future prospects of bionic hydrogels in bioelectronic devices are summarized.Hopefully,this comprehensive review could inspire advancements in bionic hydrogels for applications in bioelectronic devices. 展开更多
关键词 BIONIC hydrogel STRETCHABLE SENSOR BIOELECTRONICS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部