Magnetic levitation of the fusion target by coating a thin MgB_(2)superconducting shell on its outer surface has recently been proposed in inertial confinement fusion(ICF)to realize a noncontact support of the target ...Magnetic levitation of the fusion target by coating a thin MgB_(2)superconducting shell on its outer surface has recently been proposed in inertial confinement fusion(ICF)to realize a noncontact support of the target at~20 K to boost the implosion performance and fusion yield.To avoid possible effects on target ablation,the coated MgB_(2)shell is anticipated to be as thin as possible while fulfilling the target levitation requirements.Under this circumstance,the fabrication of an MgB_(2)shell with reduced thickness has been explored using a hybrid physical-chemical vapour deposition method.By gradually decreasing the deposition time,a set of MgB_(2)shells were grown on 1 mm diameter Si_(3)N_(4)spheres with the thickness reducing from 720 nm to 200 nm.The spherical shells all have a polycrystalline structure characterized by closely packed hexagonal grains,with both the grain size and thickness diminishing as the shell thickness decreases.The superconducting transition temperature Tcof the shells,as determined by both resistance and magnetization measurements,is in the range of 38-40 K and all shells exhibit ideal diamagnetism at low temperatures.For the thinnest shell of 200 nm,the superconducting critical current density Jcat 20 K reaches 8.0×10^(6)A/cm^(2)and 2.1×10^(5)A/cm^(2)under zero and 2 T applied field,respectively.The results indicate that it is experimentally feasible to fabricate MgB_(2)spherical shells with a thickness as low as 200 nm while maintaining the high Tcand Jc,thereby taking a further step towards the application of the shell in superconducting magnetic levitation for ICF.展开更多
文摘Magnetic levitation of the fusion target by coating a thin MgB_(2)superconducting shell on its outer surface has recently been proposed in inertial confinement fusion(ICF)to realize a noncontact support of the target at~20 K to boost the implosion performance and fusion yield.To avoid possible effects on target ablation,the coated MgB_(2)shell is anticipated to be as thin as possible while fulfilling the target levitation requirements.Under this circumstance,the fabrication of an MgB_(2)shell with reduced thickness has been explored using a hybrid physical-chemical vapour deposition method.By gradually decreasing the deposition time,a set of MgB_(2)shells were grown on 1 mm diameter Si_(3)N_(4)spheres with the thickness reducing from 720 nm to 200 nm.The spherical shells all have a polycrystalline structure characterized by closely packed hexagonal grains,with both the grain size and thickness diminishing as the shell thickness decreases.The superconducting transition temperature Tcof the shells,as determined by both resistance and magnetization measurements,is in the range of 38-40 K and all shells exhibit ideal diamagnetism at low temperatures.For the thinnest shell of 200 nm,the superconducting critical current density Jcat 20 K reaches 8.0×10^(6)A/cm^(2)and 2.1×10^(5)A/cm^(2)under zero and 2 T applied field,respectively.The results indicate that it is experimentally feasible to fabricate MgB_(2)spherical shells with a thickness as low as 200 nm while maintaining the high Tcand Jc,thereby taking a further step towards the application of the shell in superconducting magnetic levitation for ICF.