A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designin...A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designing philosophy utilizing the similarity between hardware, software and the problems to be solved is embodied, based on the multi-scale method and discrete simulation approaches developed at Institute of Process Engineering (IPE) and implemented in a graphic processing unit (GPU)-based hybrid computing mode. The preliminary applications of this machine in areas of multi-phase flow, molecular dynamics and so on are reported, demonstrating the supercomputer as a paradigm of green computation in new architecture.展开更多
The effects of disinfectants and plasmid-based antibiotic resistance genes(ARGs)on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinkingwater distribution syst...The effects of disinfectants and plasmid-based antibiotic resistance genes(ARGs)on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinkingwater distribution system under simulated conditionswere explored.The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH_(2)Cl was higher than in the control groups.Therewas no similar phenomenon in biofilm.In thewater of reactors containing NaClO,the aphA and bla geneswere lower than in the antibiotic resistant bacteria group,while both genes were higher in the water of reactors with NH_(2)Cl than in the control group.Chloramine may promote the transfer of ARGs in the water phase.Both genes in the biofilm of the reactors containing chlorine were lower than the control group.Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm(p<0.05).The results of the sequencing assay showed that bacteria in the biofilm,in the presence of disinfectant,were primarily Gram-negative.1.0 mg/L chlorine decreased the diversity of the community in the biofilm.The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine.展开更多
The imperative quest for renewable energy sources and advanced energy storage technologies has arisen amidst the escalating perils of climate change and dwindling fossil fuel reserves.In the realm of energy storage te...The imperative quest for renewable energy sources and advanced energy storage technologies has arisen amidst the escalating perils of climate change and dwindling fossil fuel reserves.In the realm of energy storage technologies,asymmetric supercapacitor(ASC)has garnered significant attention owing to its high energy density and power density.In the quest for advanced electrode materials for ASC,the integration of 2D layered heterostructures on hierarchical porous carbon(HPC)substrates has emerged as a promising approach to enhance the electrochemical performance.Herein,a highly innovative hierarchical NiCo LDH/MoS_(2)/HPC heterostructure was successfully synthesized using a simple two-step hydrothermal method for the electrode materials of ASC.Benefiting from the unique hierarchical heterostructure of NiCo LDH/MoS_(2)/HPC composite and the synergistic effect between the components,it reveals an exceptional specific capacitance of 2368 F/g at 0.5 A/g in a three-electrode system,which significantly exceeds that of conventional supercapacitor electrodes.Additionally,the ASC device of NiCo LDH/MoS_(2)/HPC//HPC achieves remarkable specific capacitance of 236 F/g at 0.5 A/g and an impressive energy density of 84Wh/kg at a power density of 400 W/kg,as well as superior cyclic stability.This study not only demonstrates the effectiveness of incorporating MoS_(2) and NiCo LDH into a carbon-based framework for supercapacitor applications but also opens avenues for designing more efficient energy storage devices.展开更多
文摘A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designing philosophy utilizing the similarity between hardware, software and the problems to be solved is embodied, based on the multi-scale method and discrete simulation approaches developed at Institute of Process Engineering (IPE) and implemented in a graphic processing unit (GPU)-based hybrid computing mode. The preliminary applications of this machine in areas of multi-phase flow, molecular dynamics and so on are reported, demonstrating the supercomputer as a paradigm of green computation in new architecture.
基金supported by the Natural Science Foundation of China(No.52070145,51778453).
文摘The effects of disinfectants and plasmid-based antibiotic resistance genes(ARGs)on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinkingwater distribution system under simulated conditionswere explored.The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH_(2)Cl was higher than in the control groups.Therewas no similar phenomenon in biofilm.In thewater of reactors containing NaClO,the aphA and bla geneswere lower than in the antibiotic resistant bacteria group,while both genes were higher in the water of reactors with NH_(2)Cl than in the control group.Chloramine may promote the transfer of ARGs in the water phase.Both genes in the biofilm of the reactors containing chlorine were lower than the control group.Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm(p<0.05).The results of the sequencing assay showed that bacteria in the biofilm,in the presence of disinfectant,were primarily Gram-negative.1.0 mg/L chlorine decreased the diversity of the community in the biofilm.The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine.
基金supported by the National Key Research and Development Program of China(No.2021YFB3801200)the National Natural Science Foundation of China(Nos.22278051,22178044,and 22308043)the Science and Technology Innovation foundation of CNPC(No.2022DQ02–0608).
文摘The imperative quest for renewable energy sources and advanced energy storage technologies has arisen amidst the escalating perils of climate change and dwindling fossil fuel reserves.In the realm of energy storage technologies,asymmetric supercapacitor(ASC)has garnered significant attention owing to its high energy density and power density.In the quest for advanced electrode materials for ASC,the integration of 2D layered heterostructures on hierarchical porous carbon(HPC)substrates has emerged as a promising approach to enhance the electrochemical performance.Herein,a highly innovative hierarchical NiCo LDH/MoS_(2)/HPC heterostructure was successfully synthesized using a simple two-step hydrothermal method for the electrode materials of ASC.Benefiting from the unique hierarchical heterostructure of NiCo LDH/MoS_(2)/HPC composite and the synergistic effect between the components,it reveals an exceptional specific capacitance of 2368 F/g at 0.5 A/g in a three-electrode system,which significantly exceeds that of conventional supercapacitor electrodes.Additionally,the ASC device of NiCo LDH/MoS_(2)/HPC//HPC achieves remarkable specific capacitance of 236 F/g at 0.5 A/g and an impressive energy density of 84Wh/kg at a power density of 400 W/kg,as well as superior cyclic stability.This study not only demonstrates the effectiveness of incorporating MoS_(2) and NiCo LDH into a carbon-based framework for supercapacitor applications but also opens avenues for designing more efficient energy storage devices.