期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
HOSVD-based LPV modeling and mixed robust H_2/H_∞ control design for air-breathing hypersonic vehicle 被引量:5
1
作者 Wei Jiang Hongli Wang +1 位作者 Jinghui Lu Zheng Xie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期183-191,共9页
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H... This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach. 展开更多
关键词 high order singular value decompositionhosvd linear parameter varying(LPV) tensor product model transformation linear matrix inequality(LMI) air-breathing hypersonic vehicle
在线阅读 下载PDF
FAST ALGORITHMS FOR HIGHER-ORDER SINGULAR VALUE DECOMPOSITION FROM INCOMPLETE DATA 被引量:1
2
作者 Yangyang Xu 《Journal of Computational Mathematics》 SCIE CSCD 2017年第4期397-422,共26页
Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of the... Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of them involve incomplete data. To obtain HOSVD of the data with missing values, one can first impute the missing entries through a certain tensor completion method and then perform HOSVD to the reconstructed data. However, the two-step procedure can be inefficient and does not make reliable decomposition. In this paper, we formulate an incomplete HOSVD problem and combine the two steps into solving a single optimization problem, which simultaneously achieves imputation of missing values and also tensor decomposition. We also present one algorithm for solving the problem based on block coordinate update (BCU). Global convergence of the algorithm is shown under mild assumptions and implies that of the popular higher-order orthogonality iteration (HOOI) method, and thus we, for the first time, give global convergence of HOOI. In addition, we compare the proposed method to state-of-the-art ones for solving incom- plete HOSVD and also low-rank tensor completion problems and demonstrate the superior performance of our method over other compared ones. Furthermore, we apply it to face recognition and MRI image reconstruction to show its practical performance. 展开更多
关键词 multilinear data analysis higher-order singular value decomposition hosvd low-rank tensor completion non-convex optimization higher-order orthogonality iteration(HOOI) global convergence.
原文传递
Distributed Monitoring of Power System Oscillations Using Multiblock Principal Component Analysis and Higher-order Singular Value Decomposition
3
作者 Arturo Román-Messina Alejandro Castillo-Tapia +3 位作者 David A.Román-García Marcos A.Hernández-Ortega Carlos A.Morales-Rergis Claudia M.Castro-Arvizu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第4期818-828,共11页
The primary goal in the analysis of hierarchical distributed monitoring and control architectures is to study the spatiotemporal patterns of the interactions between areas or subsystems.In this paper,a novel conceptua... The primary goal in the analysis of hierarchical distributed monitoring and control architectures is to study the spatiotemporal patterns of the interactions between areas or subsystems.In this paper,a novel conceptual framework for distributed monitoring of power system oscillations using multiblock principal component analysis(MB-PCA)and higher-order singular value decomposition(HOSVD)is proposed to understand,characterize,and visualize the global behavior of the power system.The proposed framework can be used to evaluate the influence of a given area or utility on the oscillatory behavior,uncover low-dimensional structures from high-dimensional data,and analyze the effects of heterogeneous data on the modal characteristics and interpretation of power system.The metrics are then investigated to examine the relationships between the dynamic patterns and participation of individual data blocks in the global behavior of the system.Practical application of these techniques is demonstrated by case studies of two systems:a 14-machine test system and a 5449-bus 635-generator equivalent model of a large power system. 展开更多
关键词 Distributed monitoring multiblock principal component analysis(MB-PCA) higher-order singular value decomposition(hosvd) Tucker decomposition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部