This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
本文提出了一种基于波束域实值处理的高阶奇异值分解(Higher-Order Singular Value Decomposition)双基地多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达测角算法。该算法与传统波束域测角算法不同,通过凸优化方法对发射和接...本文提出了一种基于波束域实值处理的高阶奇异值分解(Higher-Order Singular Value Decomposition)双基地多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达测角算法。该算法与传统波束域测角算法不同,通过凸优化方法对发射和接收波束域矩阵进行优化设计,可以灵活设置波束主瓣宽度并抑制副瓣电平,发射和接收波束的主副瓣比能够得到很大提高,从而达到提高回波信噪比的目的。相比于传统的矩阵信号模型,通过HOSVD获得的张量信号子空间可以得到更高的测角精度,所提算法对发射和接收波束矩阵的结构进行设计以构造实值张量信号模型。最后,通过建立映射关系的方法对插值误差进行补偿,仿真结果验证所提算法的有效性。展开更多
针对大众标注网站推荐系统中存在的数据矩阵稀疏性影响推荐效果的问题,文中采取如下策略:对标注数据进行K-means聚类,将具有相似标签特征的项目进行归类以保证数据具有初始聚合性;聚类完成后运用高阶奇异值分解(high order singular val...针对大众标注网站推荐系统中存在的数据矩阵稀疏性影响推荐效果的问题,文中采取如下策略:对标注数据进行K-means聚类,将具有相似标签特征的项目进行归类以保证数据具有初始聚合性;聚类完成后运用高阶奇异值分解(high order singular value decomposition,HOSVD)对聚类后的标注数据建立多维张量模型.该策略重点利用张量分解方法对含有用户、标签和项目的三元数据组进行分析,可以进一步改进稀疏性问题,同时形成对项目资源的个性化推荐.通过对社交书签网站Delicious.com的标注数据的处理,验证该方法对解决推荐系统中矩阵稀疏性问题以及提高推荐效果具有改进效果.展开更多
针对短相干积累时间(coherent integration time,CIT)引起的多普勒分辨率低,无法从强大海杂波中检测出舰船目标的问题,提出了基于高阶奇异值分解(higher order singular value decomposition,HOSVD)的海杂波抑制算法。首先利用相邻单元...针对短相干积累时间(coherent integration time,CIT)引起的多普勒分辨率低,无法从强大海杂波中检测出舰船目标的问题,提出了基于高阶奇异值分解(higher order singular value decomposition,HOSVD)的海杂波抑制算法。首先利用相邻单元内海杂波的相干性,将毗邻距离单元和方位单元的多脉冲接收数据应用三阶张量表示,然后采用HOSVD方法求解三阶张量的海杂波子空间和目标子空间的投影矩阵,最后利用投影矩阵将三阶张量映射到目标子空间以抑制海杂波。该方法与现有子空间类海杂波抑制方法相比,提高了信干噪比(signal to clutter plus noise ratio,SCNR)和峰值旁瓣电平比(peak sidelobe level ratio,PSLR),解决了目标谱峰偏移问题。展开更多
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
文摘本文提出了一种基于波束域实值处理的高阶奇异值分解(Higher-Order Singular Value Decomposition)双基地多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达测角算法。该算法与传统波束域测角算法不同,通过凸优化方法对发射和接收波束域矩阵进行优化设计,可以灵活设置波束主瓣宽度并抑制副瓣电平,发射和接收波束的主副瓣比能够得到很大提高,从而达到提高回波信噪比的目的。相比于传统的矩阵信号模型,通过HOSVD获得的张量信号子空间可以得到更高的测角精度,所提算法对发射和接收波束矩阵的结构进行设计以构造实值张量信号模型。最后,通过建立映射关系的方法对插值误差进行补偿,仿真结果验证所提算法的有效性。
文摘针对大众标注网站推荐系统中存在的数据矩阵稀疏性影响推荐效果的问题,文中采取如下策略:对标注数据进行K-means聚类,将具有相似标签特征的项目进行归类以保证数据具有初始聚合性;聚类完成后运用高阶奇异值分解(high order singular value decomposition,HOSVD)对聚类后的标注数据建立多维张量模型.该策略重点利用张量分解方法对含有用户、标签和项目的三元数据组进行分析,可以进一步改进稀疏性问题,同时形成对项目资源的个性化推荐.通过对社交书签网站Delicious.com的标注数据的处理,验证该方法对解决推荐系统中矩阵稀疏性问题以及提高推荐效果具有改进效果.
文摘针对短相干积累时间(coherent integration time,CIT)引起的多普勒分辨率低,无法从强大海杂波中检测出舰船目标的问题,提出了基于高阶奇异值分解(higher order singular value decomposition,HOSVD)的海杂波抑制算法。首先利用相邻单元内海杂波的相干性,将毗邻距离单元和方位单元的多脉冲接收数据应用三阶张量表示,然后采用HOSVD方法求解三阶张量的海杂波子空间和目标子空间的投影矩阵,最后利用投影矩阵将三阶张量映射到目标子空间以抑制海杂波。该方法与现有子空间类海杂波抑制方法相比,提高了信干噪比(signal to clutter plus noise ratio,SCNR)和峰值旁瓣电平比(peak sidelobe level ratio,PSLR),解决了目标谱峰偏移问题。
基金Supponed by the National Natural Science Foundation of China under Grant Nos.6060309660533090(国家自然科学基金)+3 种基金the National High-Tech Research and Development Plan of China under Grant No.2006AA010107(国家高技术研究发展计划(863)the N~ional Key Technology R&D Program 0f China under Grant No.2007BAH11B01(国家科技支撑计划)the Program for Changjiang Scholars and Innovative Research Team in University ofChina under Grant Nos.IRT0652PCSIRT(长江学者和创新团队发展计划)