The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency an...The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.展开更多
With the continuous development of science and technology and the comprehensive arrival of the information era, new media has gradually emerged and developed, which has had a serious impact on the original media form....With the continuous development of science and technology and the comprehensive arrival of the information era, new media has gradually emerged and developed, which has had a serious impact on the original media form. Under the background of new media, higher requirements are put forward for the education and teaching activities of broadcasting and hosting specialty in colleges and universities, and the combination of new media technology and Chinese educational practice is the general trend in the current education field, which can effectively improve students’ learning quality and learning effects, and provide a broader space for the development of new media professions. This paper mainly explores the teaching strategies of broadcasting and hosting specialty in colleges and universities from the perspective of new media.展开更多
According to the development trend in China' s radio and television industry, the requirements of the media for broadcasters and hosts are totally different from before, and they differ from each other. Good appearan...According to the development trend in China' s radio and television industry, the requirements of the media for broadcasters and hosts are totally different from before, and they differ from each other. Good appearance, elegant temperament and pleasant voice are no longer the sole criteria for being employed. This paper analyzes the problems with the education of broadcasting and hosting majors in China' s universities and proposes strategies and suggestions on this, so as to offer a guideline for its future development.展开更多
Distribution systems face significant challenges in maintaining power quality issues and maximizing renewable energy hosting capacity due to the increased level of photovoltaic(PV)systems integration associated with v...Distribution systems face significant challenges in maintaining power quality issues and maximizing renewable energy hosting capacity due to the increased level of photovoltaic(PV)systems integration associated with varying loading and climate conditions.This paper provides a comprehensive overview on the exit strategies to enhance distribution system operation,with a focus on harmonic mitigation,voltage regulation,power factor correction,and optimization techniques.The impact of passive and active filters,custom power devices such as dynamic voltage restorers(DVRs)and static synchronous compensators(STATCOMs),and grid modernization technologies on power quality is examined.Additionally,this paper specifically explores machine learning and AI-driven solutions for power quality enhancement,discussing their potential to optimize system performance and facilitate renewable energy integration.Modern optimization algorithms are also discussed as effective procedures to find the settings for power system components for optimal operation,including the allocation of distributed energy resources and the tuning of control parameters.Added to that,this paper explores the methods to maximize renewable energy hosting capacity while ensuring reliable and efficient system operation.By synthesizing existing research,this review aims to provide insights into the challenges and opportunities in distribution system operation and optimization,highlighting future research directions that enhance power quality and facilitate renewable energy integration.展开更多
The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users...The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.展开更多
Photovoltaic(PV)generation always exhibits strong uncertainty and variability;therefore,its excessive integration brings huge risks to the safe operation of power systems.In this letter,a two-stage robust optimization...Photovoltaic(PV)generation always exhibits strong uncertainty and variability;therefore,its excessive integration brings huge risks to the safe operation of power systems.In this letter,a two-stage robust optimization approach based on decision-dependent uncertainty is devised to identify the Pv hosting capacity that can be accepted to ensure the effective consumption of PV generation under uncertainty.The proposed approach is validated by numerical experiments for a microgrid and a distribution network.展开更多
Dependence of distributed generation(DG)outputs and load plays an essential role in renewable energy accommodation.This paper presents a novel DG hosting capacity(DGHC)evaluation method for distribution networks consi...Dependence of distributed generation(DG)outputs and load plays an essential role in renewable energy accommodation.This paper presents a novel DG hosting capacity(DGHC)evaluation method for distribution networks considering highdimensional dependence relations among solar radiation,wind speed,and various load types(i.e.,commercial,residential,and industrial).First,an advanced dependence modeling method called regular vine(R-vine)is applied to capture the complex dependence structure of solar radiation,wind speed,commercial loads,industrial loads,and residential loads.Then,a chanceconstrained DGHC evaluation model is employed to figure out maximum hosting capacity of each DG and its optimal allocation plan with different operational risks.Finally,a Benders decomposition algorithm is also employed to reduce computational burden.The proposed approaches are validated using a set of historical data from China.Results show dependence among different DGs and loads has significant impact on hosting capacity.Results also suggest using the R-vine model to capture dependence among distributed energy resources(DERs)and load.This finding provides useful advice for distribution networks in installing renewable energy generations.展开更多
Against the backdrop of rapid development in the new media environment,the audience's demand for media content consumption is becoming increasingly diversified,and the broadcasting and hosting industry is facing u...Against the backdrop of rapid development in the new media environment,the audience's demand for media content consumption is becoming increasingly diversified,and the broadcasting and hosting industry is facing unprecedented challenges and opportunities.Emotional expression plays a crucial role in enhancing program effectiveness and audience engagement in this process.This article elaborates on the importance of emotional expression in modern broadcasting and hosting art,including enhancing program infectivity,improving audience interaction,and forming a unique style for hosts.In addition,the article also deeply analyzes effective emotional expression strategies,such as adjusting emotional tone,using language and nonverbal means,and emphasizes the importance of maintaining authenticity and moderation in expression.Finally,this article explores the positive impact of emotional expression on improving communication efficiency,enhancing audience identification and loyalty,and promoting brand building.This article aims to provide useful reference and guidance for broadcasting and hosting practitioners,in order to promote the sustainable development and theoretical innovation of the field of broadcasting and hosting art.展开更多
介绍使用国际流行的OJS期刊出版管理系统建设低成本小型科技期刊编辑部网络平台的创新方法,该方法可为广大小型科技期刊编辑部提供一种可以借鉴的低成本建站方案。以首个使用OJS建站的中文刊——《中国肺癌杂志》网站的经验为例,文章介...介绍使用国际流行的OJS期刊出版管理系统建设低成本小型科技期刊编辑部网络平台的创新方法,该方法可为广大小型科技期刊编辑部提供一种可以借鉴的低成本建站方案。以首个使用OJS建站的中文刊——《中国肺癌杂志》网站的经验为例,文章介绍了OJS开源项目概况,结合实际经验介绍利用OJS与IX Web Hosting虚拟主机建站的方法,探讨了在实施过程中遇到的技术问题及相应解决方案,最后总结网站建成后收到的良好效果,井对OJS项目的发展趋势进行了展望。展开更多
In June 2026,the FIFA World Cup will be jointly hosted by three countries for the first time,featur ing 48 teams and 104 matches across 16 cities in North Amer ica.For the United States,Canada,and Mexico,this is not o...In June 2026,the FIFA World Cup will be jointly hosted by three countries for the first time,featur ing 48 teams and 104 matches across 16 cities in North Amer ica.For the United States,Canada,and Mexico,this is not only a sporting event but also a well-planned“economic feast.”展开更多
Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati...Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”展开更多
To facilitate the large-scale integration of distributed wind generation(DWG), the uncertainty of DWG outputs needs to be quantified, and the maximum DWG hosting capacity(DWGHC) of distribution systems must be assesse...To facilitate the large-scale integration of distributed wind generation(DWG), the uncertainty of DWG outputs needs to be quantified, and the maximum DWG hosting capacity(DWGHC) of distribution systems must be assessed. However, the structure of the high-dimensional nonlinear dependencies and the abnormal marginal distributions observed in geographically dispersed DWG outputs lead to the increase of the complexity of the uncertainty analysis. To address this issue,this paper proposes a novel assessment model for DWGHC that considers the spatial correlations between distributed generation(DG) outputs. In our method, an advanced dependence modeling approach called vine copula is applied to capture the high-dimensional correlation between geographically dispersed DWG outputs and generate a sufficient number of correlated scenarios. To avoid an overly conservative hosting capacity in some extreme scenarios, a novel chance-constrained assessment model for DWGHC is developed to determine the optimal sizes and locations of DWG for a given DWG curtailment probability. To handle the computational challenges associated with large-scale scenarios, a bilinear variant of Benders decomposition(BD) is employed to solve the chance-constrained problem.The effectiveness of the proposed method is demonstrated using a typical 38-bus distribution system in eastern China.展开更多
Objective:Gastric cancer(GC)is a globally common cancer characterized by high incidence and mortality worldwide.Advances in the molecular understanding of GC provide promising targets for GC diagnosis and therapy.Long...Objective:Gastric cancer(GC)is a globally common cancer characterized by high incidence and mortality worldwide.Advances in the molecular understanding of GC provide promising targets for GC diagnosis and therapy.Long non-coding RNAs(lncRNAs)and their downstream regulators are regarded to be implicated in the progression of multiple types of malignancies.Studies have shown that the lncRNA small nucleolar RNA host gene 4(SNHG4)serves as a tumor promoter in various malignancies,while its function in GC has yet to be characterized.Therefore,our study aimed to explore the role and underlying mechanism of SNHG4 in GC.Methods:We used qRT-PCR to analyze SNHG4 expression in GC tissues and cells.Kaplan-Meier analysis was used to assess the correlation between SNHG4 expression and the survival rate of GC patients.Cellular function experiments such as CCK-8,BrdU,colony formation,flow cytometry analysis,and transwell were performed to explore the effects of SNHG4 on GC cell proliferation,apoptosis,cell cycle,migration,and invasion.We also established xenograft mouse models to explore the effect of SNHG4 on GC tumor growth.Mechanically,dual luciferase reporter assay was used to verify the interaction between SNHG4 and miR-409-3p and between miR-409-3p and cAMP responsive element binding protein 1(CREB1).Results:The results indicated that SNHG4 was overexpressed in GC tissues and cell lines,and was linked with poor survival rate of GC patients.SNHG4 promoted GC cell proliferation,migration,and invasion while inhibiting cell apoptosis and cell cycle arrest in vitro.The in vivo experiment indicated that SNHG4 facilitated GC tumor growth.Furthermore,SNHG4 was demonstrated to bind to miR-409-3p.Moreover,CREB1 was directly targeted by miR-409-3p.Rescue assays demonstrated that miR-409-3p deficiency reversed the suppressive impact of SNHG4 knockdown on GC cell malignancy.Additionally,miR-409-3p was also revealed to inhibit GC cell proliferation,migration,and invasion by targeting CREB1.Conclusion:In conclusion,we verified that the SNHG4 promoted GC growth and metastasis by binding to miR-409-3p to upregulate CREB1,which may deepen the understanding of the underlying mechanism in GC development.展开更多
Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D...Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.展开更多
Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practica...Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life.展开更多
The rising prevalence of drug-resistant Gram-positive pathogens,particularly methicillin-resistant Staphy-lococcus aureus(MRSA)and vancomycin-resistant Enterococci(VRE),poses a substantial clinical challenge.Biofilm-a...The rising prevalence of drug-resistant Gram-positive pathogens,particularly methicillin-resistant Staphy-lococcus aureus(MRSA)and vancomycin-resistant Enterococci(VRE),poses a substantial clinical challenge.Biofilm-associated infections exacerbate this problem due to their inherent antibiotic resistance and complex structure.Current antibiotic treatments struggle to penetrate biofilms and eradicate persister cells,leading to prolonged antibiotic use and increased resistance.Host defense peptides(HDPs)have shown promise,but their clinical application is limited by factors such as enzymatic degradation and difficulty in largescale preparation.Synthetic HDP mimics,such as poly(2-oxazoline),have emerged as effective alter-natives.Herein,we found that the poly(2-oxazoline),Gly-POX_(20),demonstrated rapid and potent activity against clinically isolated multidrug-resistant Gram-positive strains.Gly-POX_(20) showed greater stability under physiological conditions compared to natural peptides,including resistance to protease degradation.Importantly,Gly-POX_(20) inhibited biofilm formation and eradicated mature biofilm and demonstrated superior in vivo therapeutic efficacy to vancomycin in a MRSA biofilm-associated mouse keratitis model,suggesting its potential as a novel antimicrobial agent against drug-resistant Gram-positive bacteria,especially biofilm-associated infections.展开更多
基金the Scientific and Technological Project of SGCC Headquarters entitled“Smart Distribution Network and Ubiquitous Power Internet of Things Integrated Development Collaborative Planning Technology Research”(5400-201956447A-0-0-00).
文摘The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.
文摘With the continuous development of science and technology and the comprehensive arrival of the information era, new media has gradually emerged and developed, which has had a serious impact on the original media form. Under the background of new media, higher requirements are put forward for the education and teaching activities of broadcasting and hosting specialty in colleges and universities, and the combination of new media technology and Chinese educational practice is the general trend in the current education field, which can effectively improve students’ learning quality and learning effects, and provide a broader space for the development of new media professions. This paper mainly explores the teaching strategies of broadcasting and hosting specialty in colleges and universities from the perspective of new media.
文摘According to the development trend in China' s radio and television industry, the requirements of the media for broadcasters and hosts are totally different from before, and they differ from each other. Good appearance, elegant temperament and pleasant voice are no longer the sole criteria for being employed. This paper analyzes the problems with the education of broadcasting and hosting majors in China' s universities and proposes strategies and suggestions on this, so as to offer a guideline for its future development.
文摘Distribution systems face significant challenges in maintaining power quality issues and maximizing renewable energy hosting capacity due to the increased level of photovoltaic(PV)systems integration associated with varying loading and climate conditions.This paper provides a comprehensive overview on the exit strategies to enhance distribution system operation,with a focus on harmonic mitigation,voltage regulation,power factor correction,and optimization techniques.The impact of passive and active filters,custom power devices such as dynamic voltage restorers(DVRs)and static synchronous compensators(STATCOMs),and grid modernization technologies on power quality is examined.Additionally,this paper specifically explores machine learning and AI-driven solutions for power quality enhancement,discussing their potential to optimize system performance and facilitate renewable energy integration.Modern optimization algorithms are also discussed as effective procedures to find the settings for power system components for optimal operation,including the allocation of distributed energy resources and the tuning of control parameters.Added to that,this paper explores the methods to maximize renewable energy hosting capacity while ensuring reliable and efficient system operation.By synthesizing existing research,this review aims to provide insights into the challenges and opportunities in distribution system operation and optimization,highlighting future research directions that enhance power quality and facilitate renewable energy integration.
基金supported in part by the State Grid Scientific and Technological Projects of China(No.SGTYHT/21-JS-223)in part by the National Natural Science Foundation of China(No.52277118),in part by the Tianjin Science and Technology Planning Project(No.22ZLGCGX00050)in part by the 67th Postdoctoral Fund and Independent Innovation Fund of Tianjin University in 2021.
文摘The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.
基金This work was supported by the National Research Foundation Singapore,Intra-CREATE REQ0393291(No.NRF2022-ITS010-0005)the National Research Foundation Singapore,Energy Market Authority under its Energy Programme(EP Award EMA-EP004-EKJGC-0003).
文摘Photovoltaic(PV)generation always exhibits strong uncertainty and variability;therefore,its excessive integration brings huge risks to the safe operation of power systems.In this letter,a two-stage robust optimization approach based on decision-dependent uncertainty is devised to identify the Pv hosting capacity that can be accepted to ensure the effective consumption of PV generation under uncertainty.The proposed approach is validated by numerical experiments for a microgrid and a distribution network.
基金supported by the High-level Talents Introduction&Research Start-up Fund Program of Nanjing Institute of Technology(YKJ202134).
文摘Dependence of distributed generation(DG)outputs and load plays an essential role in renewable energy accommodation.This paper presents a novel DG hosting capacity(DGHC)evaluation method for distribution networks considering highdimensional dependence relations among solar radiation,wind speed,and various load types(i.e.,commercial,residential,and industrial).First,an advanced dependence modeling method called regular vine(R-vine)is applied to capture the complex dependence structure of solar radiation,wind speed,commercial loads,industrial loads,and residential loads.Then,a chanceconstrained DGHC evaluation model is employed to figure out maximum hosting capacity of each DG and its optimal allocation plan with different operational risks.Finally,a Benders decomposition algorithm is also employed to reduce computational burden.The proposed approaches are validated using a set of historical data from China.Results show dependence among different DGs and loads has significant impact on hosting capacity.Results also suggest using the R-vine model to capture dependence among distributed energy resources(DERs)and load.This finding provides useful advice for distribution networks in installing renewable energy generations.
文摘Against the backdrop of rapid development in the new media environment,the audience's demand for media content consumption is becoming increasingly diversified,and the broadcasting and hosting industry is facing unprecedented challenges and opportunities.Emotional expression plays a crucial role in enhancing program effectiveness and audience engagement in this process.This article elaborates on the importance of emotional expression in modern broadcasting and hosting art,including enhancing program infectivity,improving audience interaction,and forming a unique style for hosts.In addition,the article also deeply analyzes effective emotional expression strategies,such as adjusting emotional tone,using language and nonverbal means,and emphasizes the importance of maintaining authenticity and moderation in expression.Finally,this article explores the positive impact of emotional expression on improving communication efficiency,enhancing audience identification and loyalty,and promoting brand building.This article aims to provide useful reference and guidance for broadcasting and hosting practitioners,in order to promote the sustainable development and theoretical innovation of the field of broadcasting and hosting art.
文摘介绍使用国际流行的OJS期刊出版管理系统建设低成本小型科技期刊编辑部网络平台的创新方法,该方法可为广大小型科技期刊编辑部提供一种可以借鉴的低成本建站方案。以首个使用OJS建站的中文刊——《中国肺癌杂志》网站的经验为例,文章介绍了OJS开源项目概况,结合实际经验介绍利用OJS与IX Web Hosting虚拟主机建站的方法,探讨了在实施过程中遇到的技术问题及相应解决方案,最后总结网站建成后收到的良好效果,井对OJS项目的发展趋势进行了展望。
文摘In June 2026,the FIFA World Cup will be jointly hosted by three countries for the first time,featur ing 48 teams and 104 matches across 16 cities in North Amer ica.For the United States,Canada,and Mexico,this is not only a sporting event but also a well-planned“economic feast.”
基金supported by the National Natural Science Foundation of China,No.82174112(to PZ)Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine,No.22HHZYSS00015(to PZ)State-Sponsored Postdoctoral Researcher Program,No.GZC20231925(to LN)。
文摘Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”
基金supported by the National Key Research and Development Program of China (No. 2016YFB0900100)High-level Talents Introduction&Research Start-up Fund Program of Nanjing Institute of Technology (No.YKJ202134)。
文摘To facilitate the large-scale integration of distributed wind generation(DWG), the uncertainty of DWG outputs needs to be quantified, and the maximum DWG hosting capacity(DWGHC) of distribution systems must be assessed. However, the structure of the high-dimensional nonlinear dependencies and the abnormal marginal distributions observed in geographically dispersed DWG outputs lead to the increase of the complexity of the uncertainty analysis. To address this issue,this paper proposes a novel assessment model for DWGHC that considers the spatial correlations between distributed generation(DG) outputs. In our method, an advanced dependence modeling approach called vine copula is applied to capture the high-dimensional correlation between geographically dispersed DWG outputs and generate a sufficient number of correlated scenarios. To avoid an overly conservative hosting capacity in some extreme scenarios, a novel chance-constrained assessment model for DWGHC is developed to determine the optimal sizes and locations of DWG for a given DWG curtailment probability. To handle the computational challenges associated with large-scale scenarios, a bilinear variant of Benders decomposition(BD) is employed to solve the chance-constrained problem.The effectiveness of the proposed method is demonstrated using a typical 38-bus distribution system in eastern China.
文摘Objective:Gastric cancer(GC)is a globally common cancer characterized by high incidence and mortality worldwide.Advances in the molecular understanding of GC provide promising targets for GC diagnosis and therapy.Long non-coding RNAs(lncRNAs)and their downstream regulators are regarded to be implicated in the progression of multiple types of malignancies.Studies have shown that the lncRNA small nucleolar RNA host gene 4(SNHG4)serves as a tumor promoter in various malignancies,while its function in GC has yet to be characterized.Therefore,our study aimed to explore the role and underlying mechanism of SNHG4 in GC.Methods:We used qRT-PCR to analyze SNHG4 expression in GC tissues and cells.Kaplan-Meier analysis was used to assess the correlation between SNHG4 expression and the survival rate of GC patients.Cellular function experiments such as CCK-8,BrdU,colony formation,flow cytometry analysis,and transwell were performed to explore the effects of SNHG4 on GC cell proliferation,apoptosis,cell cycle,migration,and invasion.We also established xenograft mouse models to explore the effect of SNHG4 on GC tumor growth.Mechanically,dual luciferase reporter assay was used to verify the interaction between SNHG4 and miR-409-3p and between miR-409-3p and cAMP responsive element binding protein 1(CREB1).Results:The results indicated that SNHG4 was overexpressed in GC tissues and cell lines,and was linked with poor survival rate of GC patients.SNHG4 promoted GC cell proliferation,migration,and invasion while inhibiting cell apoptosis and cell cycle arrest in vitro.The in vivo experiment indicated that SNHG4 facilitated GC tumor growth.Furthermore,SNHG4 was demonstrated to bind to miR-409-3p.Moreover,CREB1 was directly targeted by miR-409-3p.Rescue assays demonstrated that miR-409-3p deficiency reversed the suppressive impact of SNHG4 knockdown on GC cell malignancy.Additionally,miR-409-3p was also revealed to inhibit GC cell proliferation,migration,and invasion by targeting CREB1.Conclusion:In conclusion,we verified that the SNHG4 promoted GC growth and metastasis by binding to miR-409-3p to upregulate CREB1,which may deepen the understanding of the underlying mechanism in GC development.
文摘Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1C1C1003375)。
文摘Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life.
基金financially supported by the National Key Research and Development Program of China(no.2022YFC2303100)National Natural Science Foundation of China(nos.T2325010,22305082,52203162,and 22075078)+1 种基金Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission),the Fundamental Research Funds for the Central Universities(nos.JKVD1241029 and JKD01241701)Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry(Changchun Institute of Applied Chemistry,Chinese Academy of Sciences),the Open Project of Engineering Research Center of Dairy Quality and Safety Control Technology(Ministry of Education,no.R202201).
文摘The rising prevalence of drug-resistant Gram-positive pathogens,particularly methicillin-resistant Staphy-lococcus aureus(MRSA)and vancomycin-resistant Enterococci(VRE),poses a substantial clinical challenge.Biofilm-associated infections exacerbate this problem due to their inherent antibiotic resistance and complex structure.Current antibiotic treatments struggle to penetrate biofilms and eradicate persister cells,leading to prolonged antibiotic use and increased resistance.Host defense peptides(HDPs)have shown promise,but their clinical application is limited by factors such as enzymatic degradation and difficulty in largescale preparation.Synthetic HDP mimics,such as poly(2-oxazoline),have emerged as effective alter-natives.Herein,we found that the poly(2-oxazoline),Gly-POX_(20),demonstrated rapid and potent activity against clinically isolated multidrug-resistant Gram-positive strains.Gly-POX_(20) showed greater stability under physiological conditions compared to natural peptides,including resistance to protease degradation.Importantly,Gly-POX_(20) inhibited biofilm formation and eradicated mature biofilm and demonstrated superior in vivo therapeutic efficacy to vancomycin in a MRSA biofilm-associated mouse keratitis model,suggesting its potential as a novel antimicrobial agent against drug-resistant Gram-positive bacteria,especially biofilm-associated infections.