Owing to the Benjamin-Feir instability, the Stokes wave train experiences a modulation-demodulation process, and presents a recurrence characteristics. Stiassnie and Shemer researched the unstable evolution process an...Owing to the Benjamin-Feir instability, the Stokes wave train experiences a modulation-demodulation process, and presents a recurrence characteristics. Stiassnie and Shemer researched the unstable evolution process and provided a theoretical formulation for the recurrence period in 1985 on the basis of the nonlinear cubic Schrodinger equation (NLS). However, NLS has limitations on the narrow band and the weak nonlinearity. The recurrence period is re-investigated in this paper by using a highly efficient High Order Spectral (HOS) method, which can be applied for the direct phase- resolved simulation of the nonlinear wave train evolution. It is found that the Stiassnie and Shemer's formula should be modified in the cases with most unstable initial conditions, which is important for such topics as the generation mechanisms of freak waves. A new recurrence period formula is presented and some new evolution characteristics of the Stokes wave train are also discussed in details.展开更多
The present paper reviews the recent developments of a high⁃order⁃spectral method(HOS)and the combination with computational fluid dynamics(CFD)method for wave⁃structure interactions.As the numerical simulations of wa...The present paper reviews the recent developments of a high⁃order⁃spectral method(HOS)and the combination with computational fluid dynamics(CFD)method for wave⁃structure interactions.As the numerical simulations of wave⁃structure interaction require efficiency and accuracy,as well as the ability in calculating in open sea states,the HOS method has its strength in both generating extreme waves in open seas and fast convergence in simulations,while computational fluid dynamics(CFD)method has its advantages in simulating violent wave⁃structure interactions.This paper provides the new thoughts for fast and accurate simulations,as well as the future work on innovations in fine fluid field of numerical simulations.展开更多
An effective numerical model for wave propagation over three-dimensional(3D)bathymetry was developed based on the High-Order Spectral(HOS)method and combined with a moving bottom boundary.Based on this model,tsunami w...An effective numerical model for wave propagation over three-dimensional(3D)bathymetry was developed based on the High-Order Spectral(HOS)method and combined with a moving bottom boundary.Based on this model,tsunami waves caused by various mechanisms were simulated and analyzed.Two-dimensional bed upthrust and the effect of the uplift velocity of the bathymetry on the wave profiles of tsunami waves were studied.Next,tsunami waves caused by 3D submarine slides were generated and the effects of the slide velocity,slide dimension and water depth on the tsunami waves were analyzed.Based on wavelet analysis,the properties of the tsunami wave propagation were investigated.The results show that the bottom movement can significantly affect the generation and propagation of tsunami waves and the studies could help understand the mechanisms of tsunamis caused by a moving bottom boundary.展开更多
This paper presents a developed new coupled method which combined our in-house CFD solver naoe-FOAM-SJTU and naoe-FOAM-os with a potential theory High Order Spectral method(HOS).A parametric study of nonlinear wave pr...This paper presents a developed new coupled method which combined our in-house CFD solver naoe-FOAM-SJTU and naoe-FOAM-os with a potential theory High Order Spectral method(HOS).A parametric study of nonlinear wave propagation in computational fluid dynamics(CFD)zone is considered.Mesh convergence,time step convergence,time discretization scheme and length of relaxation zone are all carried out.Those parametric studies verify the steady of this new combined method and give better choice for wave propagation.The dissipation in propagation of nonlinear regular wave can be lower than 3%in static mesh,and less than 2%in overset grid mesh.Meanwhile,a LNG FPSO is put into the viscous wave tank to study the suitable size of CFD zone.To achieve a better solution with least calculating resources and best numerical results,the length of CFD zone is discussed.These parametric studies can give reference upon employment of the potential-viscous coupled method and validation of the coupled method.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41106001)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20100094110016)+1 种基金the Special Research Funding of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2009585812)the Priority Academic Program Development of Jiangsu Higher Education Institutions (Coastal Development and Conservancy)
文摘Owing to the Benjamin-Feir instability, the Stokes wave train experiences a modulation-demodulation process, and presents a recurrence characteristics. Stiassnie and Shemer researched the unstable evolution process and provided a theoretical formulation for the recurrence period in 1985 on the basis of the nonlinear cubic Schrodinger equation (NLS). However, NLS has limitations on the narrow band and the weak nonlinearity. The recurrence period is re-investigated in this paper by using a highly efficient High Order Spectral (HOS) method, which can be applied for the direct phase- resolved simulation of the nonlinear wave train evolution. It is found that the Stiassnie and Shemer's formula should be modified in the cases with most unstable initial conditions, which is important for such topics as the generation mechanisms of freak waves. A new recurrence period formula is presented and some new evolution characteristics of the Stokes wave train are also discussed in details.
基金National Natural Science Foundation of China(Grant No.51879159)the National Key Research and Development Program of China(Grant Nos.2019YFB1704200 and 2019YFC0312400)+2 种基金the Chang Jiang Scholars Program(Grant No.T2014099)the Shanghai Excellent Academic Leaders Program(Grant No.17XD1402300)the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(Grant No.2016-23/09).
文摘The present paper reviews the recent developments of a high⁃order⁃spectral method(HOS)and the combination with computational fluid dynamics(CFD)method for wave⁃structure interactions.As the numerical simulations of wave⁃structure interaction require efficiency and accuracy,as well as the ability in calculating in open sea states,the HOS method has its strength in both generating extreme waves in open seas and fast convergence in simulations,while computational fluid dynamics(CFD)method has its advantages in simulating violent wave⁃structure interactions.This paper provides the new thoughts for fast and accurate simulations,as well as the future work on innovations in fine fluid field of numerical simulations.
基金This study was financially supported by the National Natural Science Foundation of China(Grant Nos.51739010 and 51879037).
文摘An effective numerical model for wave propagation over three-dimensional(3D)bathymetry was developed based on the High-Order Spectral(HOS)method and combined with a moving bottom boundary.Based on this model,tsunami waves caused by various mechanisms were simulated and analyzed.Two-dimensional bed upthrust and the effect of the uplift velocity of the bathymetry on the wave profiles of tsunami waves were studied.Next,tsunami waves caused by 3D submarine slides were generated and the effects of the slide velocity,slide dimension and water depth on the tsunami waves were analyzed.Based on wavelet analysis,the properties of the tsunami wave propagation were investigated.The results show that the bottom movement can significantly affect the generation and propagation of tsunami waves and the studies could help understand the mechanisms of tsunamis caused by a moving bottom boundary.
基金supported by the National Natural Science Foundation of China(Grant Nos.51879159,51809169 and 51909160)the National Key Research and Development Program of China(Grant Nos.2019YFB1704200,2019YFC0312400)+1 种基金supported by the Chang Jiang Scholars Program(Grant No.T2014099)the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(Grant No.2016-23/09).
文摘This paper presents a developed new coupled method which combined our in-house CFD solver naoe-FOAM-SJTU and naoe-FOAM-os with a potential theory High Order Spectral method(HOS).A parametric study of nonlinear wave propagation in computational fluid dynamics(CFD)zone is considered.Mesh convergence,time step convergence,time discretization scheme and length of relaxation zone are all carried out.Those parametric studies verify the steady of this new combined method and give better choice for wave propagation.The dissipation in propagation of nonlinear regular wave can be lower than 3%in static mesh,and less than 2%in overset grid mesh.Meanwhile,a LNG FPSO is put into the viscous wave tank to study the suitable size of CFD zone.To achieve a better solution with least calculating resources and best numerical results,the length of CFD zone is discussed.These parametric studies can give reference upon employment of the potential-viscous coupled method and validation of the coupled method.