We present the design of two interacting harmonic non-elliptical compressible liquid inclusions embedded in an infinite isotropic elastic matrix subjected to uniform remote in-plane stresses.The original constant mean...We present the design of two interacting harmonic non-elliptical compressible liquid inclusions embedded in an infinite isotropic elastic matrix subjected to uniform remote in-plane stresses.The original constant mean stress(or the first invariant of the stress tensor)in the matrix remains undisturbed in the presence of the two harmonic liquid inclusions.The two non-elliptical liquid-solid interfaces are described by a fourparameter conformal mapping function that maps the doubly connected domain occupied by the matrix onto an annulus in the image plane.The closed-form expressions for the internal uniform hydrostatic stress fields within the two liquid inclusions are obtained.The hoop stresses are uniformly distributed along the two liquid-solid interfaces on the matrix side.展开更多
This paper investigates the mechanisms of rock failure related to axial splitting and shear failure due to hoop stresses in cylindrical specimens.The hoop stresses are caused by normal viscous stress.The rheological d...This paper investigates the mechanisms of rock failure related to axial splitting and shear failure due to hoop stresses in cylindrical specimens.The hoop stresses are caused by normal viscous stress.The rheological dynamics theory(RDT)is used,with the mechanical parameters being determined by P-and S-wave velocities.The angle of internal friction is determined by the ratio of Young's modulus and the dynamic modulus,while dynamic viscosity defines cohesion and normal viscous stress.The effect of frequency on cohesion is considered.The initial stress state is defined by the minimum cohesion at the elastic limit when axial splitting can occur.However,as radial cracks grow,the stress state becomes oblique and moves towards the shear plane.The maximum and nonlinear cohesions are defined by the rock parameters under compressive strength when the radial crack depth reaches a critical value.The efficacy and precision of RDT are validated through the presentation of ultrasonic measurements on sandstone and rock specimens sourced from the literature.The results presented in dimensionless diagrams can be utilized in microcrack zones in the absence of lateral pressure in rock masses that have undergone disintegration due to excavation.展开更多
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te...Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.展开更多
Stomata play critical roles in gas exchange and immunity to pathogens.While many genes regulating early stomatal development up to the production of young guard cells(GCs)have been identified in Arabidopsis,much less ...Stomata play critical roles in gas exchange and immunity to pathogens.While many genes regulating early stomatal development up to the production of young guard cells(GCs)have been identified in Arabidopsis,much less is known about how young GCs develop into mature functional stomata.Here we perform a maturomics study on stomata,with“maturomics”defined as omics analysis of the maturation process of a tissue or organ.We develop an integrative scheme to analyze three public stomata-related single-cell RNAseq datasets and identify a list of 586 genes that are specifically up-regulated in all three datasets during stomatal maturation and function formation.The list,termed sc_586,is enriched with known regulators of stomatal maturation and functions.To validate the reliability of the dataset,we selected two candidate G2-like transcription factor genes,MYS1 and MYS2,to investigate their roles in stomata.These two genes redundantly regulate the size and hoop rigidity of mature GCs,and the mys1 mys2 double mutants cause mature GCs with severe defects in regulating their stomatal apertures.Taken together,our results provide a valuable list of genes for studying GC maturation and function formation.展开更多
An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concret...An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2023-03227 Schiavo)。
文摘We present the design of two interacting harmonic non-elliptical compressible liquid inclusions embedded in an infinite isotropic elastic matrix subjected to uniform remote in-plane stresses.The original constant mean stress(or the first invariant of the stress tensor)in the matrix remains undisturbed in the presence of the two harmonic liquid inclusions.The two non-elliptical liquid-solid interfaces are described by a fourparameter conformal mapping function that maps the doubly connected domain occupied by the matrix onto an annulus in the image plane.The closed-form expressions for the internal uniform hydrostatic stress fields within the two liquid inclusions are obtained.The hoop stresses are uniformly distributed along the two liquid-solid interfaces on the matrix side.
文摘This paper investigates the mechanisms of rock failure related to axial splitting and shear failure due to hoop stresses in cylindrical specimens.The hoop stresses are caused by normal viscous stress.The rheological dynamics theory(RDT)is used,with the mechanical parameters being determined by P-and S-wave velocities.The angle of internal friction is determined by the ratio of Young's modulus and the dynamic modulus,while dynamic viscosity defines cohesion and normal viscous stress.The effect of frequency on cohesion is considered.The initial stress state is defined by the minimum cohesion at the elastic limit when axial splitting can occur.However,as radial cracks grow,the stress state becomes oblique and moves towards the shear plane.The maximum and nonlinear cohesions are defined by the rock parameters under compressive strength when the radial crack depth reaches a critical value.The efficacy and precision of RDT are validated through the presentation of ultrasonic measurements on sandstone and rock specimens sourced from the literature.The results presented in dimensionless diagrams can be utilized in microcrack zones in the absence of lateral pressure in rock masses that have undergone disintegration due to excavation.
基金Project supported by the Doctoral Fund of Yanshan University (Grant No.B919)the Program of Independent Research for Young Teachers of Yanshan University (Grant No.020000534)the S&T Program of Hebei Province of China (Grant No.QN2016123)。
文摘Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.
基金supported by grants from the Strategic Priority Research Program of the Chinese Academy of Science(XDA24010303)the National Natural Science Foundation of China(31770268)+1 种基金the Fundamental Research Funds for the Central Universities(WK2070000091)the University of Science and Technology of China(Start-up fund to S.M.)。
文摘Stomata play critical roles in gas exchange and immunity to pathogens.While many genes regulating early stomatal development up to the production of young guard cells(GCs)have been identified in Arabidopsis,much less is known about how young GCs develop into mature functional stomata.Here we perform a maturomics study on stomata,with“maturomics”defined as omics analysis of the maturation process of a tissue or organ.We develop an integrative scheme to analyze three public stomata-related single-cell RNAseq datasets and identify a list of 586 genes that are specifically up-regulated in all three datasets during stomatal maturation and function formation.The list,termed sc_586,is enriched with known regulators of stomatal maturation and functions.To validate the reliability of the dataset,we selected two candidate G2-like transcription factor genes,MYS1 and MYS2,to investigate their roles in stomata.These two genes redundantly regulate the size and hoop rigidity of mature GCs,and the mys1 mys2 double mutants cause mature GCs with severe defects in regulating their stomatal apertures.Taken together,our results provide a valuable list of genes for studying GC maturation and function formation.
文摘An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.