The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through ...The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through nanostructure design and interface modifica-tion has proven to be an effective strategy to obtain efficient electromagnetic wave absorption.Here,this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nano-particles to improve the interfacial polarization intensity.The method effectively controlled the absorption efficiency of Co^(2+)through de-lignification modification of bamboo,and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles,which is conducive to the in-depth construction of heterogeneous interfaces.In addition,the multiphase struc-ture brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material.Therefore,the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance,achieving excel-lent reflection loss(RL)of-79 dB and effective absorption band width of 4.12 GHz(6.84-10.96 GHz)at low load of 15wt%.Among them,the material’s optimal radar cross-section(RCS)reduction value can reach 31.9 dB·m^(2).This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers,and offers new ideas for the high-value utiliza-tion of biomass materials.展开更多
Outdoor jackets are engineered to protect against extreme weather while ensuring comfort and safety. Key to this protection is the thermal properties, achieved through insulation materials like down feathers and synth...Outdoor jackets are engineered to protect against extreme weather while ensuring comfort and safety. Key to this protection is the thermal properties, achieved through insulation materials like down feathers and synthetic fibers, which trap heat and minimize heat loss. Resistance to wind, rain, and snow is provided by waterproof and windproof fabrics, while breathability allows moisture to escape, maintaining a comfortable microclimate. Air permeability and water resistance are essential for achieving this balance. This study examines two outdoor jacket prototypes with six material layers each. The outer layer (Layer 1) consists of 100% polyester coated with polyurethane for waterproofing. Inner layers (Layers 2, 3, and 6) use wool/cotton and wool/polyamide blends, offering insulation and moisture-wicking properties. Down feathers are used as the filling material, providing excellent warmth. Advanced materials like graphene and silver honeycomb fabrics were included to enhance thermal conductivity and regulate heat transfer. Performance testing focused on thermal conductivity, comfort (water and air permeability), and mechanical properties like tensile strength and tear resistance. Tests also assessed spray application and fastness to evaluate durability under environmental exposure. Results showed that jackets with silver-infused honeycomb fabrics had superior thermal conductivity, enabling better heat regulation and comfort in harsh conditions. The findings highlight the advantages of integrating silver honeycomb fabrics into outdoor jackets. These materials enhance insulation, thermal regulation, and overall comfort, making them ideal for high-performance designs. Incorporating such fabrics ensures functionality, durability, and user protection in extreme environments.展开更多
This study provides a thorough investigation into the vibration behavior and impulse response characteristics of composite honeycomb cylindrical shells filled with damping gel(DG-FHCSs).To address the limitations of e...This study provides a thorough investigation into the vibration behavior and impulse response characteristics of composite honeycomb cylindrical shells filled with damping gel(DG-FHCSs).To address the limitations of existing methods,a dynamic model is developed for both free and forced vibration scenarios.These models incorporate the virtual spring technology to accurately simulate a wide range of boundary conditions.Using the first-order shear deformation theory in conjunction with the Jacobi orthogonal polynomials,an energy expression is formulated,and the natural frequencies and mode shapes are determined via the Ritz method.Based on the Newmark-βmethod,the pulse response amplitudes and attenuation characteristics under various transient excitation loads are analyzed and evaluated.The accuracy of the theoretical model and the vibration suppression capability of the damping gel are experimentally validated.Furthermore,the effects of key structural parameters on the natural frequency and vibration response are systematically examined.展开更多
The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studi...The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studies have been conducted to synergistically improve multi-performance by optimizing the spoke structure.Inspired by the concept of functionally gradient structures,this paper introduces a functionally gradient honeycomb NPT and its optimization method.Firstly,this paper completes the parameterization of the honeycomb spoke structure and establishes the numerical models of honeycomb NPTs with seven different gradients.Subsequently,the accuracy of the numerical models is verified using experimental methods.Then,the static and dynamic characteristics of these gradient honeycomb NPTs are thoroughly examined by using the finite element method.The findings highlight that the gradient structure of NPT-3 has superior performance.Building upon this,the study investigates the effects of key parameters,such as honeycomb spoke thickness and length,on load-carrying capacity,honeycomb spoke stress and mass.Finally,a multi-objective optimization method is proposed that uses a response surface model(RSM)and the Nondominated Sorting Genetic Algorithm-II(NSGA-II)to further optimize the functional gradient honeycomb NPTs.The optimized NPT-OP shows a 23.48%reduction in radial stiffness,8.95%reduction in maximum spoke stress and 16.86%reduction in spoke mass compared to the initial NPT-1.The damping characteristics of the NPT-OP have also been improved.The results offer a theoretical foundation and technical methodology for the structural design and optimization of gradient honeycomb NPTs.展开更多
Interlayer interactions in bilayer or multilayer electron systems have been studied extensively,and many exotic physical phenomena have been revealed.However,systematic investigations of the impact of interlayer inter...Interlayer interactions in bilayer or multilayer electron systems have been studied extensively,and many exotic physical phenomena have been revealed.However,systematic investigations of the impact of interlayer interactions on magnonic physics are very few.Here,we use a van derWaals(vdW)honeycomb heterostructure as a platform to investigate the modulation of magnon properties in honeycomb AA-and AB-stacking heterostructures with ferromagnetic and antiferromagnetic interlayer interactions,including topological phases and thermal Hall conductivity.Our results reveal that interlayer interactions play a crucial role in modulating the magnonic topology and Hall transport properties of magnetic heterostructures,with potential for experimental realization.展开更多
This study conducts a thorough examination of honeycomb sandwich panels with a lattice core,adopting advanced computational techniques for their modeling.The research extends its analysis to investigate the natural fr...This study conducts a thorough examination of honeycomb sandwich panels with a lattice core,adopting advanced computational techniques for their modeling.The research extends its analysis to investigate the natural frequency behavior of sandwich panels,encompassing the comprehensive assessment of the entire panel structure.At its core,the research applies the Representative Volume Element(RVE)theory to establish the equivalent material properties,thereby enhancing the predictive capabilities of lattice structure simulations.Themethodology applies these properties in the core of infinite panels,which are modeled using double periodic boundary conditions to explore their natural frequencies.Expanding beyond mere material characterization,the study introduces a novel approach to defining the material within the panel cores.By incorporating alternate materials such as steel and AlSiC,and by strategically modifying their ratios,the research streamlines the process of material variation without resorting to repetitive 3D operations on the constituent cells.This optimizes not only the computational resources but also offers insights into the structural response under diverse material compositions.Furthermore,the investigation extends its scope to analyze the influence of curvature on the structural behavior of lattice structures.Panels are modeled with varying degrees of curvature,ranging from single to double curvatures,including cylindrical and spherical configurations,across a spectrum of radii.A rigorous analysis is performed to study the effect of curvature on the mechanical performance and stability of lattice structures,offering valuable insights for design optimization and structural engineering applications.By building upon the existing knowledge and introducing innovative methodologies,this study contributes to improving the understanding of lattice structures and their applicability in diverse engineering contexts.展开更多
We investigate the hole-doped Hubbard model on a honeycomb lattice using a fermionic projected entangled pair states(f PEPS)method.Our study reveals the presence of quasi-long-range order of Cooper pairs,characterized...We investigate the hole-doped Hubbard model on a honeycomb lattice using a fermionic projected entangled pair states(f PEPS)method.Our study reveals the presence of quasi-long-range order of Cooper pairs,characterized by powerlaw decay of correlation functions with exponents K>1.We further analyze the competing phases of superconductivity,specifically the antiferromagnetic(AFM)order and the charge density wave(CDW)order.Our results show that there are domain wall structures when the hole dopingδis small and the Coulomb parameter U is large.However,these structures disappear as we increase the hole dopingδor decrease U.Furthermore,for small hole doping,the system exhibits AFM order,which diminishes forδ>0.05.Conversely,as the doping level increases,the CDW order gradually decreases.Notably,a considerable CDW order persists even at higher doping levels.These findings suggest a progressive suppression of the AFM order and a growing prominence of the CDW order with increasingδ.展开更多
Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigati...Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigating M_(2)N_(2)(M=Nb,Ta)with DLHC structure using first-principles calculations.Our results show that M_(2)N_(2)are stable and metallic,exhibiting superconducting behavior.Specifically,Nb_(2)N_(2)and Ta_(2)N_(2)display superconducting transition temperatures of 6.8 K and 8.8 K,respectively.Their electron-phonon coupling is predominantly driven by the coupling between metal d-orbitals and low-frequency metal-dominated vibration modes.Interestingly,two compounds also exhibit non-trivial band topology.Thus,M_(2)N_(2)are promising platforms for studying the interplay between topology and superconductivity and fill the gap in superconductivity research for DLHC materials.展开更多
Re-entrant honeycombs are widely used in safeguard structures due to their geometric simplicity and excellent energy absorption capacities.However,traditional re-entrant honeycombs exhibit insufficient stiffness and s...Re-entrant honeycombs are widely used in safeguard structures due to their geometric simplicity and excellent energy absorption capacities.However,traditional re-entrant honeycombs exhibit insufficient stiffness and stability owing to the lack of internal support.This paper proposes a new hybrid honeycomb by integrating a chiral component inside the re-entrant honeycomb.Since Young's modulus is a key parameter to evaluate the energy absorption performance and stiffness,an analytical model is given to predict the effective Young's modulus of the proposed hybrid honeycomb.It is found that the optimal design scheme is to directly insert a circular ring inside the re-entrant honeycomb.The normalized specific energy absorption(SEA)of the hybrid honeycomb is 95%larger than that of the traditional re-entrant honeycomb.The normalized SEA first increases to a peak value and then decreases with the cell wall thickness.The optimal thickness of the cell wall for the maximum SEA is derived in terms of the geometric configuration of the unit cell.The normalized SEA first decreases to a valley value and then increases with the re-entrant angle.A longer horizontal cell wall results in a smaller normalized SEA.This paper provides a new design method for safeguard structures with high stiffness and energy absorption performance.展开更多
Auxetic metamaterials,which exhibit the negative Poisson’s ratio(NPR)effect,have found wide applications in many engineering fields.However,their high porosity inevitably weakens their bearing capacity and impact res...Auxetic metamaterials,which exhibit the negative Poisson’s ratio(NPR)effect,have found wide applications in many engineering fields.However,their high porosity inevitably weakens their bearing capacity and impact resistance.To improve the energy absorption efficiency of auxetic honeycombs,a novel vertex-based hierarchical star-shaped honeycomb(VSH)is designed by replacing each vertex in the classical star-shaped honeycomb(SSH)with a newly added self-similar sub-cell.An analytical model is built to investigate the Young’s modulus of VSH,which shows good agreement with experimental results and numerical simulations.The in-plane dynamic crushing behaviors of VSH at three different crushing velocities are investigated,and empirical formulas for the densification strain and plateau stress are deduced.Numerical results reveal more stable deformation modes for VSH,attributed to the addition of self-similar star-shaped sub-cells.Moreover,compared with SSH under the same relative densities,VSH exhibits better specific energy absorption and higher plateau stresses.Therefore,VSH is verified to be a better candidate for energy absorption while maintaining the auxetic effect.This study is expected to provide a new design strategy for auxetic honeycombs.展开更多
The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing th...The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing the first-order shear deformation theory(FSDT)incorporating the relative,centripetal,and Coriolis accelerations alongside the initial hoop tension created by the rotation.The governing equations,compatibility conditions,and boundary conditions are attained using Hamilton’s principle.Utilizing trigonometric functions,an analytical solution is derived in the circumferential direction,and a numerical one is presented in the meridional direction via the differential quadrature method(DQM).The effects of various factors on the critical rotational speeds and forward and backward frequencies of the shell are studied.The present work is the first theoretical work regarding the dynamic analysis of a rotating sandwich conical shell with an auxetic honeycomb core strengthened with a ring support.展开更多
Photocatalytic degradation of volatile organic compounds(VOCs)is a significant applying aspect of pho-tocatalysis.Both the modulation of photocatalysts and the rational dispersion of them on supports are key for solar...Photocatalytic degradation of volatile organic compounds(VOCs)is a significant applying aspect of pho-tocatalysis.Both the modulation of photocatalysts and the rational dispersion of them on supports are key for solar-driven VOC degradation.Conventional batch-type photoreactors have low efficiency while continuous-flow photoreactors suffer from the problem of incomplete removal of VOCs.Herein,aiming for continuous and complete degradation of toluene gas as the target contaminant,continuous-flow pho-tocatalytic degradation reactors were made by adhering the vanadium and nitrogen codoped TiO_(2)on honeycomb ceramics(V/N-TiO_(2)@HC)by a simple sol-gel method.In such a reactor,the rich ordered pores in the HC accelerate mass transport of toluene,and the introduction of V/N dopants narrows the bandgap and widens the light absorption range of TiO_(2),together resulting in continuous and nearly-complete pho-tocatalytic degradation of toluene.The unique and stable structure of HC allows the photocatalysts to be reused.The degradation rate of toluene gas can reach 97.8%,and after 24 rounds of photocatalytic degra-dation,there is still a degradation rate of 96.7%.The impacts of loading times and gaseous flow rate on the photocatalytic performance of V/N-TiO_(2)@HC are studied in detail.Our study provides a practical so-lution for the continuous and complete photocatalytic degradation of VOCs and opens a new application field for HC.展开更多
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(...The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin lay...The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin layers(namely honeycomb-FGS shells)subjected to dynamic loading.Touratier's non-polynomial higher-order shear deformation theory(HSDT)is used due to its simplicity and performance.The governing equation is derived from Hamilton's principle.After verifying the present approach,the effect of input parameters on the dynamic response of honeycomb-FGS shells is carried out in detail.展开更多
Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulati...Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulating vibrations and destroying them afterward is a challenge to scientists.In this paper,the curve shell equations and a linear quadratic regulator are adopted for the state feedback design to manage the structure vibrations in state space forms.A five-layer sandwich doubly curved micro-composite shell,comprising two piezoelectric layers for the sensor and actuator,is modeled by the fourth-order shear deformation theory.The core(honeycomb,truss,and corrugated)is analyzed for the bearing of transverse shear forces.The results show that the honeycomb core has a greater effect on the vibrations.When the parameters related to the core and the weight percentage of graphene increase,the frequency increases.The uniform distribution of graphene platelets results in the lowest natural frequency while the natural frequency increases.Furthermore,without taking into account the piezoelectric layers,the third-order shear deformation theory(TSDT)and fourth-order shear deformation theory(FOSDT)align closely.However,when the piezoelectric layers are incorporated,these two theories diverge significantly,with the frequencies in the FOSDT being lower than those in the TSDT.展开更多
The sandwich panel incorporated a honeycomb core,a widely utilized composite structure recognized as a fundamental classification of composite materials.Comprised a core resembling a honeycomb,possessing thickness and...The sandwich panel incorporated a honeycomb core,a widely utilized composite structure recognized as a fundamental classification of composite materials.Comprised a core resembling a honeycomb,possessing thickness and softness,and is flank by rigid face sheets that sandwich various shapes and materials.This paper presents an examination of the static and dynamic analysis of lightweight plates made of aluminum honeycomb sandwich composites.Honeycomb sandwich plate samples are 300 mm long,and 300 mm wide,the heights of the core have been varied at four values ranging from 10 to 25 mm.The honeycomb core is manufactured from Aluminum material by using a novel technique namely resistance spot welding(RSW)instead of using adhesive material,which is often used when an industrial flaw is detected.Numerical optimization based on response surface methodology(RSM)and design of experiment software(DOE)was used to verify the current work.A theoretical examination of the crashworthiness behavior(maximum bending load,maximum deflection)and vibration attributes(natural frequency,damping ratio,transient temporal response)of honeycomb sandwich panels with different design parameters was also carried out.In addition,the finite element method-based ANSYS software was used to confirm the theoretical conclusions.The findings of the present work showed that the relationship between the natural frequency,core height,and cell size is direct.In contrast,the relationship between the natural frequency and the thickness of the cell wall is inverse.Conversely,the damping ratio is inversely proportional to the core height and cell size but directly proportional to the thickness of the cell wall.The study indicates that altering the core height within 10-25 mm leads to a significant increase of 82%in the natural frequency and a notable decrease of 49%in the damping ratio.These findings are based on a specific cell size value of 0.01 m and a cell wall thickness of 0.001 m.Also,the results indicate that for a given set of cell wall thickness and size values,an increase in core height from(0.01-0.025)m,leads to a reduction of the percentage of maximum response approX imately 76%.Conversely,the increasing thickness of the wall of cell wall,ranging 0.3-0.7 mm with a constant core height equal to 0.015 m,resulted in a de crease of maximum transient response by 7.8%.展开更多
The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Th...The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity.展开更多
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and...The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.展开更多
The investigation of non-Fourier thermal shock fracture behavior in multicrack auxetic honeycomb structures(HSs) is presented. By employing a non-Fourier heat conduction model, the corresponding temperature and therma...The investigation of non-Fourier thermal shock fracture behavior in multicrack auxetic honeycomb structures(HSs) is presented. By employing a non-Fourier heat conduction model, the corresponding temperature and thermal stress fields are established. Subsequently, a thermal stress intensity factor(TSIF) model for the auxetic HSs,accounting for multi-crack interactions, is developed. Finally, using the fracture-based failure criterion, the non-Fourier multi-crack critical temperature of the auxetic HSs is determined. This investigation thoroughly examines the effects of the non-Fourier effect(NFE), auxetic property, crack spacing, and crack location on the thermal shock fracture behavior of the auxetic HSs. Results indicate that a stronger NFE leads to weaker thermal shock resistance in auxetic HSs. Regardless of the presence of the NFE, the auxetic property consistently increases the multi-crack critical temperature of the HSs.Additionally, the interaction of multi-crack inhibits thermal shock crack propagation in HSs.展开更多
基金supported by the National Key R&D Program of China(Nos.2023YFE0108300 and 2023YFD2202103)the National Natural Science Foundation of China(No.32371972)+2 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20221336)Jiangsu Agricultural Science and Technology Independent Innovation Fund,China(No.CX(23)3060)Jiangxi Forestry Bureau Forestry Science and Technology Innovation Special Project,China(No.202240).
文摘The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through nanostructure design and interface modifica-tion has proven to be an effective strategy to obtain efficient electromagnetic wave absorption.Here,this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nano-particles to improve the interfacial polarization intensity.The method effectively controlled the absorption efficiency of Co^(2+)through de-lignification modification of bamboo,and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles,which is conducive to the in-depth construction of heterogeneous interfaces.In addition,the multiphase struc-ture brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material.Therefore,the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance,achieving excel-lent reflection loss(RL)of-79 dB and effective absorption band width of 4.12 GHz(6.84-10.96 GHz)at low load of 15wt%.Among them,the material’s optimal radar cross-section(RCS)reduction value can reach 31.9 dB·m^(2).This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers,and offers new ideas for the high-value utiliza-tion of biomass materials.
文摘Outdoor jackets are engineered to protect against extreme weather while ensuring comfort and safety. Key to this protection is the thermal properties, achieved through insulation materials like down feathers and synthetic fibers, which trap heat and minimize heat loss. Resistance to wind, rain, and snow is provided by waterproof and windproof fabrics, while breathability allows moisture to escape, maintaining a comfortable microclimate. Air permeability and water resistance are essential for achieving this balance. This study examines two outdoor jacket prototypes with six material layers each. The outer layer (Layer 1) consists of 100% polyester coated with polyurethane for waterproofing. Inner layers (Layers 2, 3, and 6) use wool/cotton and wool/polyamide blends, offering insulation and moisture-wicking properties. Down feathers are used as the filling material, providing excellent warmth. Advanced materials like graphene and silver honeycomb fabrics were included to enhance thermal conductivity and regulate heat transfer. Performance testing focused on thermal conductivity, comfort (water and air permeability), and mechanical properties like tensile strength and tear resistance. Tests also assessed spray application and fastness to evaluate durability under environmental exposure. Results showed that jackets with silver-infused honeycomb fabrics had superior thermal conductivity, enabling better heat regulation and comfort in harsh conditions. The findings highlight the advantages of integrating silver honeycomb fabrics into outdoor jackets. These materials enhance insulation, thermal regulation, and overall comfort, making them ideal for high-performance designs. Incorporating such fabrics ensures functionality, durability, and user protection in extreme environments.
基金supported by the National Natural Science Foundation of China(Nos.12472005 and 52175079)the Aerospace Science Foundation of China(No.2022Z009050002)+2 种基金the Key Laboratory of Vibration and Control of Aero-Propulsion SystemMinistry of Education of China(No.VCAME201603)the Tai-Hang Laboratory Program(No.AK023)。
文摘This study provides a thorough investigation into the vibration behavior and impulse response characteristics of composite honeycomb cylindrical shells filled with damping gel(DG-FHCSs).To address the limitations of existing methods,a dynamic model is developed for both free and forced vibration scenarios.These models incorporate the virtual spring technology to accurately simulate a wide range of boundary conditions.Using the first-order shear deformation theory in conjunction with the Jacobi orthogonal polynomials,an energy expression is formulated,and the natural frequencies and mode shapes are determined via the Ritz method.Based on the Newmark-βmethod,the pulse response amplitudes and attenuation characteristics under various transient excitation loads are analyzed and evaluated.The accuracy of the theoretical model and the vibration suppression capability of the damping gel are experimentally validated.Furthermore,the effects of key structural parameters on the natural frequency and vibration response are systematically examined.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072156,52272366)Postdoctoral Foundation of China(Grant No.2020M682269).
文摘The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studies have been conducted to synergistically improve multi-performance by optimizing the spoke structure.Inspired by the concept of functionally gradient structures,this paper introduces a functionally gradient honeycomb NPT and its optimization method.Firstly,this paper completes the parameterization of the honeycomb spoke structure and establishes the numerical models of honeycomb NPTs with seven different gradients.Subsequently,the accuracy of the numerical models is verified using experimental methods.Then,the static and dynamic characteristics of these gradient honeycomb NPTs are thoroughly examined by using the finite element method.The findings highlight that the gradient structure of NPT-3 has superior performance.Building upon this,the study investigates the effects of key parameters,such as honeycomb spoke thickness and length,on load-carrying capacity,honeycomb spoke stress and mass.Finally,a multi-objective optimization method is proposed that uses a response surface model(RSM)and the Nondominated Sorting Genetic Algorithm-II(NSGA-II)to further optimize the functional gradient honeycomb NPTs.The optimized NPT-OP shows a 23.48%reduction in radial stiffness,8.95%reduction in maximum spoke stress and 16.86%reduction in spoke mass compared to the initial NPT-1.The damping characteristics of the NPT-OP have also been improved.The results offer a theoretical foundation and technical methodology for the structural design and optimization of gradient honeycomb NPTs.
基金supported by the National Natural Science Foundation of China(Grant Nos.12404051,12347156,12174157,12074150,and 12174158)the National Key Research and Development Program of China(Grant No.2022YFA1405200)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20230516)the Scientific Research Project of Jiangsu University(Grant No.550171001)support provided by the Deutsche Forschungsgemeinschaft(DFG,German Research Founda-tion)-TRR 288/2-422213477(project B06).
文摘Interlayer interactions in bilayer or multilayer electron systems have been studied extensively,and many exotic physical phenomena have been revealed.However,systematic investigations of the impact of interlayer interactions on magnonic physics are very few.Here,we use a van derWaals(vdW)honeycomb heterostructure as a platform to investigate the modulation of magnon properties in honeycomb AA-and AB-stacking heterostructures with ferromagnetic and antiferromagnetic interlayer interactions,including topological phases and thermal Hall conductivity.Our results reveal that interlayer interactions play a crucial role in modulating the magnonic topology and Hall transport properties of magnetic heterostructures,with potential for experimental realization.
文摘This study conducts a thorough examination of honeycomb sandwich panels with a lattice core,adopting advanced computational techniques for their modeling.The research extends its analysis to investigate the natural frequency behavior of sandwich panels,encompassing the comprehensive assessment of the entire panel structure.At its core,the research applies the Representative Volume Element(RVE)theory to establish the equivalent material properties,thereby enhancing the predictive capabilities of lattice structure simulations.Themethodology applies these properties in the core of infinite panels,which are modeled using double periodic boundary conditions to explore their natural frequencies.Expanding beyond mere material characterization,the study introduces a novel approach to defining the material within the panel cores.By incorporating alternate materials such as steel and AlSiC,and by strategically modifying their ratios,the research streamlines the process of material variation without resorting to repetitive 3D operations on the constituent cells.This optimizes not only the computational resources but also offers insights into the structural response under diverse material compositions.Furthermore,the investigation extends its scope to analyze the influence of curvature on the structural behavior of lattice structures.Panels are modeled with varying degrees of curvature,ranging from single to double curvatures,including cylindrical and spherical configurations,across a spectrum of radii.A rigorous analysis is performed to study the effect of curvature on the mechanical performance and stability of lattice structures,offering valuable insights for design optimization and structural engineering applications.By building upon the existing knowledge and introducing innovative methodologies,this study contributes to improving the understanding of lattice structures and their applicability in diverse engineering contexts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12134012 and 12104433)。
文摘We investigate the hole-doped Hubbard model on a honeycomb lattice using a fermionic projected entangled pair states(f PEPS)method.Our study reveals the presence of quasi-long-range order of Cooper pairs,characterized by powerlaw decay of correlation functions with exponents K>1.We further analyze the competing phases of superconductivity,specifically the antiferromagnetic(AFM)order and the charge density wave(CDW)order.Our results show that there are domain wall structures when the hole dopingδis small and the Coulomb parameter U is large.However,these structures disappear as we increase the hole dopingδor decrease U.Furthermore,for small hole doping,the system exhibits AFM order,which diminishes forδ>0.05.Conversely,as the doping level increases,the CDW order gradually decreases.Notably,a considerable CDW order persists even at higher doping levels.These findings suggest a progressive suppression of the AFM order and a growing prominence of the CDW order with increasingδ.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074213 and 11574108)the National Key R&D Program of China(Grant No.2022YFA1403103)+2 种基金the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the Natural Science Foundation of Shandong Province(Grant No.ZR2023MA082)the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province。
文摘Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigating M_(2)N_(2)(M=Nb,Ta)with DLHC structure using first-principles calculations.Our results show that M_(2)N_(2)are stable and metallic,exhibiting superconducting behavior.Specifically,Nb_(2)N_(2)and Ta_(2)N_(2)display superconducting transition temperatures of 6.8 K and 8.8 K,respectively.Their electron-phonon coupling is predominantly driven by the coupling between metal d-orbitals and low-frequency metal-dominated vibration modes.Interestingly,two compounds also exhibit non-trivial band topology.Thus,M_(2)N_(2)are promising platforms for studying the interplay between topology and superconductivity and fill the gap in superconductivity research for DLHC materials.
基金Project supported by Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515240072,2023A1515240053,2022B1515020099,and 2023A1515012641)Shenzhen Science and Technology Program(No.JCYJ20220818102409020)the National Natural Science Foundation of China(Nos.12102104 and 12002180)。
文摘Re-entrant honeycombs are widely used in safeguard structures due to their geometric simplicity and excellent energy absorption capacities.However,traditional re-entrant honeycombs exhibit insufficient stiffness and stability owing to the lack of internal support.This paper proposes a new hybrid honeycomb by integrating a chiral component inside the re-entrant honeycomb.Since Young's modulus is a key parameter to evaluate the energy absorption performance and stiffness,an analytical model is given to predict the effective Young's modulus of the proposed hybrid honeycomb.It is found that the optimal design scheme is to directly insert a circular ring inside the re-entrant honeycomb.The normalized specific energy absorption(SEA)of the hybrid honeycomb is 95%larger than that of the traditional re-entrant honeycomb.The normalized SEA first increases to a peak value and then decreases with the cell wall thickness.The optimal thickness of the cell wall for the maximum SEA is derived in terms of the geometric configuration of the unit cell.The normalized SEA first decreases to a valley value and then increases with the re-entrant angle.A longer horizontal cell wall results in a smaller normalized SEA.This paper provides a new design method for safeguard structures with high stiffness and energy absorption performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.11972287,12072266)the Fundamental Research Funds for the Central Universities.
文摘Auxetic metamaterials,which exhibit the negative Poisson’s ratio(NPR)effect,have found wide applications in many engineering fields.However,their high porosity inevitably weakens their bearing capacity and impact resistance.To improve the energy absorption efficiency of auxetic honeycombs,a novel vertex-based hierarchical star-shaped honeycomb(VSH)is designed by replacing each vertex in the classical star-shaped honeycomb(SSH)with a newly added self-similar sub-cell.An analytical model is built to investigate the Young’s modulus of VSH,which shows good agreement with experimental results and numerical simulations.The in-plane dynamic crushing behaviors of VSH at three different crushing velocities are investigated,and empirical formulas for the densification strain and plateau stress are deduced.Numerical results reveal more stable deformation modes for VSH,attributed to the addition of self-similar star-shaped sub-cells.Moreover,compared with SSH under the same relative densities,VSH exhibits better specific energy absorption and higher plateau stresses.Therefore,VSH is verified to be a better candidate for energy absorption while maintaining the auxetic effect.This study is expected to provide a new design strategy for auxetic honeycombs.
文摘The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing the first-order shear deformation theory(FSDT)incorporating the relative,centripetal,and Coriolis accelerations alongside the initial hoop tension created by the rotation.The governing equations,compatibility conditions,and boundary conditions are attained using Hamilton’s principle.Utilizing trigonometric functions,an analytical solution is derived in the circumferential direction,and a numerical one is presented in the meridional direction via the differential quadrature method(DQM).The effects of various factors on the critical rotational speeds and forward and backward frequencies of the shell are studied.The present work is the first theoretical work regarding the dynamic analysis of a rotating sandwich conical shell with an auxetic honeycomb core strengthened with a ring support.
基金financial support of this work from the Key Research and Development Project of Gansu Province(No.20YF3GA008)the Lanzhou Science and Technology Lanzhou Science and Technology Bureau Project(No.2022-2-15)+1 种基金Gansu Provincial Science and Technology Commissioner Special Project(No.22CX8GA106)Key Research and Development Project of Gansu Natural Energy Institute(No.2019YF-02).
文摘Photocatalytic degradation of volatile organic compounds(VOCs)is a significant applying aspect of pho-tocatalysis.Both the modulation of photocatalysts and the rational dispersion of them on supports are key for solar-driven VOC degradation.Conventional batch-type photoreactors have low efficiency while continuous-flow photoreactors suffer from the problem of incomplete removal of VOCs.Herein,aiming for continuous and complete degradation of toluene gas as the target contaminant,continuous-flow pho-tocatalytic degradation reactors were made by adhering the vanadium and nitrogen codoped TiO_(2)on honeycomb ceramics(V/N-TiO_(2)@HC)by a simple sol-gel method.In such a reactor,the rich ordered pores in the HC accelerate mass transport of toluene,and the introduction of V/N dopants narrows the bandgap and widens the light absorption range of TiO_(2),together resulting in continuous and nearly-complete pho-tocatalytic degradation of toluene.The unique and stable structure of HC allows the photocatalysts to be reused.The degradation rate of toluene gas can reach 97.8%,and after 24 rounds of photocatalytic degra-dation,there is still a degradation rate of 96.7%.The impacts of loading times and gaseous flow rate on the photocatalytic performance of V/N-TiO_(2)@HC are studied in detail.Our study provides a practical so-lution for the continuous and complete photocatalytic degradation of VOCs and opens a new application field for HC.
基金financially supported by the National Natural Science Foundation of China(51972049,52073010,and 52373259)the Projects of the Science and Technology Department of Jilin Province(20230201132GX)the Projects of the Education Department of Jilin Province(JJKH20220123KJ)。
文摘The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
基金funded by Le Quy Don Technical University Research Found (Grant No.2023QHT.03)。
文摘The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin layers(namely honeycomb-FGS shells)subjected to dynamic loading.Touratier's non-polynomial higher-order shear deformation theory(HSDT)is used due to its simplicity and performance.The governing equation is derived from Hamilton's principle.After verifying the present approach,the effect of input parameters on the dynamic response of honeycomb-FGS shells is carried out in detail.
基金the Iranian Nanotechnology Development Committee for their financial supportUniversity of Kashan for supporting this work by Grant No. 1223097/10the micro and nanomechanics laboratory by Grant No. 14022023/5
文摘Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulating vibrations and destroying them afterward is a challenge to scientists.In this paper,the curve shell equations and a linear quadratic regulator are adopted for the state feedback design to manage the structure vibrations in state space forms.A five-layer sandwich doubly curved micro-composite shell,comprising two piezoelectric layers for the sensor and actuator,is modeled by the fourth-order shear deformation theory.The core(honeycomb,truss,and corrugated)is analyzed for the bearing of transverse shear forces.The results show that the honeycomb core has a greater effect on the vibrations.When the parameters related to the core and the weight percentage of graphene increase,the frequency increases.The uniform distribution of graphene platelets results in the lowest natural frequency while the natural frequency increases.Furthermore,without taking into account the piezoelectric layers,the third-order shear deformation theory(TSDT)and fourth-order shear deformation theory(FOSDT)align closely.However,when the piezoelectric layers are incorporated,these two theories diverge significantly,with the frequencies in the FOSDT being lower than those in the TSDT.
文摘The sandwich panel incorporated a honeycomb core,a widely utilized composite structure recognized as a fundamental classification of composite materials.Comprised a core resembling a honeycomb,possessing thickness and softness,and is flank by rigid face sheets that sandwich various shapes and materials.This paper presents an examination of the static and dynamic analysis of lightweight plates made of aluminum honeycomb sandwich composites.Honeycomb sandwich plate samples are 300 mm long,and 300 mm wide,the heights of the core have been varied at four values ranging from 10 to 25 mm.The honeycomb core is manufactured from Aluminum material by using a novel technique namely resistance spot welding(RSW)instead of using adhesive material,which is often used when an industrial flaw is detected.Numerical optimization based on response surface methodology(RSM)and design of experiment software(DOE)was used to verify the current work.A theoretical examination of the crashworthiness behavior(maximum bending load,maximum deflection)and vibration attributes(natural frequency,damping ratio,transient temporal response)of honeycomb sandwich panels with different design parameters was also carried out.In addition,the finite element method-based ANSYS software was used to confirm the theoretical conclusions.The findings of the present work showed that the relationship between the natural frequency,core height,and cell size is direct.In contrast,the relationship between the natural frequency and the thickness of the cell wall is inverse.Conversely,the damping ratio is inversely proportional to the core height and cell size but directly proportional to the thickness of the cell wall.The study indicates that altering the core height within 10-25 mm leads to a significant increase of 82%in the natural frequency and a notable decrease of 49%in the damping ratio.These findings are based on a specific cell size value of 0.01 m and a cell wall thickness of 0.001 m.Also,the results indicate that for a given set of cell wall thickness and size values,an increase in core height from(0.01-0.025)m,leads to a reduction of the percentage of maximum response approX imately 76%.Conversely,the increasing thickness of the wall of cell wall,ranging 0.3-0.7 mm with a constant core height equal to 0.015 m,resulted in a de crease of maximum transient response by 7.8%.
基金Supported by Defense Industrial Technology Development Program of China(Grant No.JCKY2020605C007)Key Research and Development Program of Jiangsu Province of China(Grant Nos.BE2022069,BE2022069-1,BE2022069-3)Aeronautical Science Foundation of China(Grant No.2020Z049052001).
文摘The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity.
基金financially supported by National Natural Science Foundation of China,China (Grant No.52022012)National Key R&D Program for Young Scientists of China,China (Grant No.2022YFC3080900)。
文摘The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.
基金Project supported by the Basic and Applied Research Project from the National Natural Science Foundation of Guangdong Province of China (No. 2023A1515012641)。
文摘The investigation of non-Fourier thermal shock fracture behavior in multicrack auxetic honeycomb structures(HSs) is presented. By employing a non-Fourier heat conduction model, the corresponding temperature and thermal stress fields are established. Subsequently, a thermal stress intensity factor(TSIF) model for the auxetic HSs,accounting for multi-crack interactions, is developed. Finally, using the fracture-based failure criterion, the non-Fourier multi-crack critical temperature of the auxetic HSs is determined. This investigation thoroughly examines the effects of the non-Fourier effect(NFE), auxetic property, crack spacing, and crack location on the thermal shock fracture behavior of the auxetic HSs. Results indicate that a stronger NFE leads to weaker thermal shock resistance in auxetic HSs. Regardless of the presence of the NFE, the auxetic property consistently increases the multi-crack critical temperature of the HSs.Additionally, the interaction of multi-crack inhibits thermal shock crack propagation in HSs.