A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertic...A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertical symmetrical histograms of oriented gradients (VS-HOG) descriptor is proposed for extracting the image features. In the classification stage, an extreme learning machine (ELM) is used to improve the real-time performance. Experimental data demonstrate that, compared with other classical methods, the vehicle verification algorithm based on VS-HOG and ELM achieves a better trade-off between cost and performance. The computational cost is reduced by using the algorithm, while keeping the performance loss as low as possible. Furthermore, experimental results further show that the proposed vehicle verification method is suitable for on-road vehicle applications due to its better performance both in efficiency and accuracy.展开更多
针对高速铁路接触网支撑结构中旋转双耳耳片断裂故障难以检测的问题,提出一种HOG(histogram of oriented gradients,梯度方向直方图)特征与二维Gabor小波相结合的图像检测方法。为实现旋转双耳在待检测图像中的定位,利用其正负样本的HO...针对高速铁路接触网支撑结构中旋转双耳耳片断裂故障难以检测的问题,提出一种HOG(histogram of oriented gradients,梯度方向直方图)特征与二维Gabor小波相结合的图像检测方法。为实现旋转双耳在待检测图像中的定位,利用其正负样本的HOG特征对线性SVM分类器进行训练,对检测窗口内是否包含旋转双耳进行判别。为实现耳片断裂故障的可靠诊断,利用二维Gabor小波变换能量值对图像中的边缘信息进行筛选,进而对耳片断裂故障引起的故障裂痕进行识别。实验结果表明,本文提出的方法能在复杂的接触网支撑与悬挂装置图像中准确识别发生耳片断裂故障的旋转双耳部件,检测结果不受拍摄距离、拍摄角度以及曝光度等因素的影响,具有较高的使用价值。展开更多
基金The National Natural Science Foundation of China(No.61203237)the Natural Science Foundation of Zhejiang Province(No.LQ12F03016)the China Postdoctoral Science Foundation(No.2011M500836)
文摘A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertical symmetrical histograms of oriented gradients (VS-HOG) descriptor is proposed for extracting the image features. In the classification stage, an extreme learning machine (ELM) is used to improve the real-time performance. Experimental data demonstrate that, compared with other classical methods, the vehicle verification algorithm based on VS-HOG and ELM achieves a better trade-off between cost and performance. The computational cost is reduced by using the algorithm, while keeping the performance loss as low as possible. Furthermore, experimental results further show that the proposed vehicle verification method is suitable for on-road vehicle applications due to its better performance both in efficiency and accuracy.
文摘针对高速铁路接触网支撑结构中旋转双耳耳片断裂故障难以检测的问题,提出一种HOG(histogram of oriented gradients,梯度方向直方图)特征与二维Gabor小波相结合的图像检测方法。为实现旋转双耳在待检测图像中的定位,利用其正负样本的HOG特征对线性SVM分类器进行训练,对检测窗口内是否包含旋转双耳进行判别。为实现耳片断裂故障的可靠诊断,利用二维Gabor小波变换能量值对图像中的边缘信息进行筛选,进而对耳片断裂故障引起的故障裂痕进行识别。实验结果表明,本文提出的方法能在复杂的接触网支撑与悬挂装置图像中准确识别发生耳片断裂故障的旋转双耳部件,检测结果不受拍摄距离、拍摄角度以及曝光度等因素的影响,具有较高的使用价值。