期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A New Directional Algebraic Fast Multipole Method Based Iterative Solver for the Lippmann-Schwinger Equation Accelerated with HODLR Preconditioner
1
作者 Vaishnavi Gujjula Sivaram Ambikasaran 《Communications in Computational Physics》 SCIE 2022年第9期1061-1093,共33页
We present a fast iterative solver for scattering problems in 2D,where a penetrable object with compact support is considered.By representing the scattered field as a volume potential in terms of the Green’s function... We present a fast iterative solver for scattering problems in 2D,where a penetrable object with compact support is considered.By representing the scattered field as a volume potential in terms of the Green’s function,we arrive at the Lippmann-Schwinger equation in integral form,which is then discretized using an appropriate quadrature technique.The discretized linear system is then solved using an iterative solver accelerated by Directional Algebraic Fast Multipole Method(DAFMM).The DAFMM presented here relies on the directional admissibility condition of the 2D Helmholtz kernel[1],and the construction of low-rank factorizations of the appropriate low-rank matrix sub-blocks is based on our new Nested Cross Approximation(NCA)[2].The advantage of the NCA described in[2]is that the search space of so-called far-field pivots is smaller than that of the existing NCAs[3,4].Another significant contribution of this work is the use of HODLR based direct solver[5]as a preconditioner to further accelerate the iterative solver.In one of our numerical experiments,the iterative solver does not converge without a preconditioner.We show that the HODLR preconditioner is capable of solving problems that the iterative solver can not.Another noteworthy contribution of this article is that we perform a comparative study of the HODLR based fast direct solver,DAFMMbased fast iterative solver,and HODLR preconditioned DAFMM based fast iterative solver for the discretized Lippmann-Schwinger problem.To the best of our knowledge,this work is one of the first to provide a systematic study and comparison of these different solvers for various problem sizes and contrast functions.In the spirit of reproducible computational science,the implementation of the algorithms developed in this article is made available at https://github.com/vaishna77/Lippmann_Schwinger_Solver. 展开更多
关键词 Directional Algebraic Fast Multipole Method Lippmann-Schwinger equation lowrank matrix Helmholtz kernel Nested Cross Approximation hodlr direct solver PRECONDITIONER
原文传递
用于电磁散射分析的积分方程快速直接求解法研究及进展 被引量:2
2
作者 胡俊 荣志 +1 位作者 郭翰 聂在平 《电波科学学报》 EI CSCD 北大核心 2020年第1期26-33,共8页
介绍了一系列用于电磁散射分析的积分方程快速直接求解方法,旨在显著缓解或避免积分方程迭代求解收敛缓慢甚至不收敛的问题,为积分方程提供一个快速稳定的数值求解手段.文中详细介绍了快速直接求解方法的优点、应用以及国内外的研究动态... 介绍了一系列用于电磁散射分析的积分方程快速直接求解方法,旨在显著缓解或避免积分方程迭代求解收敛缓慢甚至不收敛的问题,为积分方程提供一个快速稳定的数值求解手段.文中详细介绍了快速直接求解方法的优点、应用以及国内外的研究动态;重点讨论了几种不同的方法,分别为分级矩阵(hierarchical matrices,-matrices)以及分级非对角低秩矩阵(hierarchically off-diagonal low-rank matrices,HODLR),包括每种方法的构建以及分解求逆方式;对各个方法的优缺点展开了进一步讨论;给出了各个方法的分解以及内存复杂度和复杂飞机模型的电磁散射分析数值算例来证明各个方法的效率和精度.最后,对快速直接求解方法当前仍然存在的主要挑战和可能的策略进行了简略的讨论以及展望. 展开更多
关键词 电磁散射分析 电磁积分方程 快速直接求解方法 分级矩阵 分级非对角低秩矩阵(hodlr)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部