In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schr6dinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equ...In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schr6dinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equation to some (1 + 1 )-dimensional partial differential systems. Finally, many exact travelling solutions of the (2+1)-dimensional HNLS equation are obtained by the classical Lie symmetry reduced method.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10875106
文摘In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schr6dinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equation to some (1 + 1 )-dimensional partial differential systems. Finally, many exact travelling solutions of the (2+1)-dimensional HNLS equation are obtained by the classical Lie symmetry reduced method.