期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fuzzy-HLSTM(Hierarchical Long Short-Term Memory)for Agricultural Based Information Mining
1
作者 Ahmed Abdu Alattab Mohammed Eid Ibrahim +2 位作者 Reyazur Rashid Irshad Anwar Ali Yahya Amin A.Al-Awady 《Computers, Materials & Continua》 SCIE EI 2023年第2期2397-2413,共17页
This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researc... This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researchers have thoroughly investigated textual,attribute-value pair,and ontological representations.As big databases result in slow case retrieval,this research suggests a fast case retrieval strategy based on an associated representation,so that,cases are interrelated in both either similar or dissimilar cases.As soon as a new case is recorded,it is compared to prior data to find a relative match.The proposed method is worked on the number of cases and retrieval accuracy between the related case representation and conventional approaches.Hierarchical Long Short-Term Memory(HLSTM)is used to evaluate the efficiency,similarity of the models,and fuzzy rules are applied to predict the environmental condition and soil quality during a particular time of the year.Based on the results,the proposed approaches allows for rapid case retrieval with high accuracy. 展开更多
关键词 Machine learning AGRICULTURE IOT hlstm fuzzy rules
在线阅读 下载PDF
基于PSWE模型的土壤水盐运移与夏玉米生产效益模拟 被引量:4
2
作者 张万锋 杨树青 +1 位作者 胡睿琦 鄂继芳 《农业机械学报》 EI CAS CSCD 北大核心 2022年第6期359-369,共11页
为实现多因素影响下土壤水盐、作物生产效益间的双层递进因果关系模拟,基于深度学习理论及方法将分级长短期记忆网络(HLSTM)与批标准化多层感知机(BMLP)耦合,且将Dropout与Adam优化算法耦合作为面向收敛的改进算法,构建了递进水盐嵌入... 为实现多因素影响下土壤水盐、作物生产效益间的双层递进因果关系模拟,基于深度学习理论及方法将分级长短期记忆网络(HLSTM)与批标准化多层感知机(BMLP)耦合,且将Dropout与Adam优化算法耦合作为面向收敛的改进算法,构建了递进水盐嵌入神经网络(Progressive salt-water embedding neural network,PSWE)模型。评估了PSWE模型的有效性,并开展了多因素协同秸秆深埋下不同灌水量的土壤水盐及夏玉米生产效益的模拟。结果表明,PSWE模型具有多因素整体协同性,有效地模拟了土壤水盐运移规律、夏玉米生产效益及各变量间的内在依存关系。模型平均均方根误差为0.031,平均绝对误差为0.569,平均决定系数为0.987。模拟结果表明,单次灌水60 mm的耕作层(0~40 cm)含水率随时间推移持续降低,单次灌水135 mm的耕作层含水率变幅较大,成熟期二者在秸秆隔层积盐率分别为49.2%和11.2%;单次灌水90 mm和120 mm的耕作层含水率保持在16%~24%之间,成熟期二者在大于40 cm土层含水率保持平稳,秸秆隔层有脱盐趋势,脱盐率为6.1%和5.9%;夏玉米单次理论灌水量为89.3~96.8 mm,耕作层理论含盐量为1.38~1.55 g/kg。综上,多因素协同秸秆深埋下适宜灌溉量可实现抑盐提效的目标,PSWE模型可有效模拟土壤水盐运移和作物生产效益,为深度学习理论及技术在土壤水盐运移模型上的应用提供参考。 展开更多
关键词 水盐运移 夏玉米 秸秆深埋 长短期记忆网络 批标准化多层感知机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部