The extra-peninsular Gondwana Group rocks are exposed in narrow patches within the Lesser Himalayan sequence of the NE-Arunachal Himalayas,India.The bulk of sediments for the sandstones of the Gondwana Group were deri...The extra-peninsular Gondwana Group rocks are exposed in narrow patches within the Lesser Himalayan sequence of the NE-Arunachal Himalayas,India.The bulk of sediments for the sandstones of the Gondwana Group were derived from felsic/acidic to intermediate igneous rocks,with minor mafic input from the upper continental crust(UCC),as supported by various discrimination diagrams based on quantification of detrital minerals coupled with sandstone geochemistry.The inputs from metamorphic sources in subordinate amounts cannot be ruled out,as indicated by quantification of the quartz varieties.These sediments were found to be sourced from the interior part of a craton or shield and recycled platformal sediments which were derived from both passive and active margin settings.The sediments experienced a wide variance in climatic conditions,from arid to humid,suffering low-moderate-inten-sity weathering(CIA:63.43;CIW:86.18;WIP:44.84;PIA:75.37;ICV:2.39;C-value:0.42;PF:0.49;Sr/Cu:9.23 and Rb/Sr:1.68)within the vicinity of the low plains to moderate hills.Additionally,redox-sensitive elements indicate the deposition of sediments under oxygenated or oxygen-rich conditions(U_(au):−2.91;Th/U:7.37;U/Th:0.18;V/Cr:1.71;δU:0.67 and Ce/Ce^(*):0.93).展开更多
The Himalayan-Tibetan Orogen holds numerous glaciers crucial for the Asian Water Tower,thus influencing the surface energy balance and climate feedback.Understanding glacier fluctuations is essential for improving our...The Himalayan-Tibetan Orogen holds numerous glaciers crucial for the Asian Water Tower,thus influencing the surface energy balance and climate feedback.Understanding glacier fluctuations is essential for improving our knowledge of current and future glacial evolution,but limited by short modern glacial observations.Proglacial lakes provide valuable opportunities to obtain high-resolution and continuous glacial changes,but detailed investigations remain scarce.For example,there is still controversy over whether lake sediments reflect melting or ablation.Therefore,we selected a modern glacial lake in the Himalayan region,formed due to glacial retreat in the 1960s,and compared its sedimentary records with modern observations.This provides a case study for future reconstruction of glacial changes using lake sediments.Our results indicate that the sediments of the proglacial lake are primarily influenced by glacial meltwater.Stronger meltwater fluxes transport more debris,magnetic minerals,and terrestrially derived organic matter to the lake.In terms of grain size distribution,the fine silt component(2–8μm)can serve as an indicator of glacial meltwater intensity.Additionally,this study reveals an opposite trend between glacial meltwater variations and air temperature trends over the past few decades.This suggests that evaporation may offset the increase in glacial meltwater,though the multi-century(>100-year)trend requires validation with longer records.展开更多
Understanding how and why assemblage dissimilarity changes along spatial gradient is a great challenge in ecology,because answers to these questions depend on the analytical types,dimensions,and components of beta div...Understanding how and why assemblage dissimilarity changes along spatial gradient is a great challenge in ecology,because answers to these questions depend on the analytical types,dimensions,and components of beta diversity we concerned.To obtain a comprehensive understanding of assemblage dissimilarity and its implications for biodiversity conservation in the Himalayas,we explored the elevational patterns and determinants of beta diversity and its turnover and nestedness components of pairwise and multiple types and taxonomic and phylogenetic dimensions simultaneously.Patterns of beta diversity and their components of different types and dimensions were calculated based on 96 sampling quadrats along an 1800-5400 m elevational gradient.We examined whether and how these patterns differed from random expectations using null models.Furthermore,we used random forest methods to quantify the role of environmental variables representing climate,topography,and human disturbance in determining these patterns.We found that beta diversity and its turnover component,regardless of its types and dimensions,shown a hump-shaped elevational patterns.Both pairwise and multiple phylogenetic beta diversity were remarkably lower than their taxonomic counterpart.These patterns were significantly less than random expectation and were mostly associated with climate variables.In summary,our results suggested that assemblage dissimilarity of seed plants was mostly originate from the replacement of closely related species determined by climate-driven environmental filtering.Accordingly,conservation efforts should better cover elevations with different climate types to maximalize biodiversity conservation,rather than only focus on elevations with highest species richness.Our study demonstrated that comparisons of beta diversity of different types,dimensions,and components could be conductive to consensus on the origin and mechanism of assemblage dissimilarity.展开更多
Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (...Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.展开更多
Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations...Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006 we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 + 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91± 0.035 km2 and glacial lakes expanded by 36.88 + 0.035 kin2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700-6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.展开更多
This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The up...This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The upper crust, lower crust and mantle lithosphere beneath the blocks of the plateau form a 'sandwich' structure with a relatively rigid-brittle upper crust, a visco-plastic lower crust and a relatively rigid-ductile mantle lithosphere. This structure is completely different from that of monotonous, cold and more rigid oceanic plates. (2) In the process of north-directed collision-compression of the Indian subcontinent, the upper crust was attached to the foreland in the form of a gigantic foreland accretionary wedge. The interior of the accretionary wedge thickened in such tectonic manners as large-scale thrusting, backthrusting and folding, and magmatic masses and partially molten masses participated in the crustal thickening. Between the upper crust and lower crust lies a large detachment (e.g. the Main Himalayan Thrust in southern Tibet, 5-8 km thick) or a very thick shear-schistose zone (e.g. the Main Qiangtang Thrust-MQT in northern Tibet, up to 20 km thick), which causes the decoupling of the upper crust and lower crust and separation of tectonic activities. (3) During the collision-compression, the Indian mantle lithosphere was delaminated into two layers from where the crust thickened most rapidly (beneath the High Himalayas). The upper layer extends to 34.5°N and the lower layer to 33.5°. They have been underthrust to depths of 250-300 km into the asthenosphere. Meanwhile the Asian lithosphere (possibly the Qaidam terrane) has also been subducted southwards. Very thick mantle lithosphere does not exist beneath the plateau. (4) The oceanic lithosphere, in light of its lithology and dynamic behaviour, might be close to those of the continental lithosphere and its front might enter the asthenosphere before the continental lithosphere. (5) A 150-200 km deep low-velocity body below 35°N and a wide low-velocity zone below the area between 33.5° and 35°N dip north at very steep angles. Volcanism took place frequently in northern Tibet and anisotropy variations are prominent at depths, which might indicate a zone of large-scale eastward transfer of deep-seated materials.展开更多
The flying squirrels(Pteromyini,Rodentia)are the most diverse and widely distributed group of gliding mammals.Taxonomic boundaries and relationships within flying squirrels remain an area of active research in mammalo...The flying squirrels(Pteromyini,Rodentia)are the most diverse and widely distributed group of gliding mammals.Taxonomic boundaries and relationships within flying squirrels remain an area of active research in mammalogy.The discovery of new specimens of Pteromys(Hylopetes)leonardi Thomas,1921,previously considered a synonym of Hylopetes alboniger,in Yunnan Province,China allowed a morphological and genetic reassessment of the status of this taxon.Phylogenetic reconstruction was implemented using sequences of two mitochondrial(12S ribosomal RNA and 16S ribosomal RNA)and one nuclear(interphotoreceptor retinoid-binding protein)gene fragments.Morphological assessments involved examinations of features preserved on skins,skulls,and penises of museum specimens,supplemented with principal component analysis of craniometric data.Together these assessments revealed that this taxon should be recognized not only as a distinct species,but should also be placed within a new genus,described here as Priapomys gen.nov.展开更多
Tho Gudui geothermal field records the highest temperature at equivalent borehole depths among the lainland hydrothermal systems in China's Mainland.Located about 150 km southeast of Lhasa City,the capital of Tibe...Tho Gudui geothermal field records the highest temperature at equivalent borehole depths among the lainland hydrothermal systems in China's Mainland.Located about 150 km southeast of Lhasa City,the capital of Tibet,the Gudui geothermal field belongs to the Sangri-Cuona rift belt,also known as the Sangri-Cuona geothermal belt,and is representative of the non-volcanic geothermal systems in the Himalayas.In this study,oxygen-18 and deuterium isotope compositions as well as 87Sr/86Sr ratios of water samples collected from the Gudui geothermal field were characterized to understand the origin and mixing processes of the geothermal fluids at Gudui.Hydrogen and oxygen isotope plots show both,deep and shallow reservoirs in the Gudui geothermal field.Deep geothermal fluids are the mixing product of magmatic and infiltrating snow-melt water.Calculations show that the magma fluid component of the deep geothermal fluids account for about 21.10%-24.04%;magma fluids lay also be a contributing source of lithium.The linear relationship of the 87Sr/86Sr isotopic ratio versus the 1/Sr plot indicates that shallow geothermal fluids form from the mixing of deep geothermal fluids with cold groundwater.Using a binary mixing model with deep geothermal fluid and cold groundwater as two end-members,the nixing ratios of the latter in most surface hot springs samples were calculated to be between 5% and 10%.Combined with basic geological characteristics,hydrogen and oxygen isotope characteristics,strontium concentration,87Sr/(86)Sr ratios,and the binary mixing model,we infer the 6 th-Class Reservoirs Evolution Conceptual Model(6-CRECM) for the Gudui geothermal system.This model represents an idealized summary of the characteristics of the Gudui geothermal field based on our comprehensive understanding of the origin and mixing processes of the geothermal fluid in Gudui.This study may aid in identifying the geothermal and geochemical origin of the Gudui high-temperature hydrothermal systems in remote Tibet of China,whose potential for geothermal development and utilization is enormous and untapped.展开更多
The survival chance of epiphytie orchids today not only depends on the natural site conditions required by the orchids but also on anthropogenic changes in site conditions. This study answers two questions: (1) Wha...The survival chance of epiphytie orchids today not only depends on the natural site conditions required by the orchids but also on anthropogenic changes in site conditions. This study answers two questions: (1) What is the ecological niche of the different epiphytic orchid species? (2) What are the ecological factors that threaten epiphytic orchid's population under anthropogenic disturbances? Our study area was the Kathmandu valley, Nepal, with its subtropical forest. We established 156 systematically selected sampling points in the Kathmandu area covering different types of ecosystems under human impacts such as densely populated area, agricultural land, mixed agricultural and settled area, old tree patches, and a natural forest in a national park. The ecological niche of the orchid species was analyzed with a principal component analysis (PCA). The correlations between the different site factors were statistically significant. Spearman's rank correlation matrices showed that the variables land-use intensities with altitude, and height with diameter in breast height (dbh) of host had the highest significant positive correlation coefficient (0.67 and 0.64 respectively). On the other hand, host bark pH and altitude as well as land use had a significantly strong negative correlation coefficient (-0.80 and -0.61, respectively). Different epiphytic orchid species interact differently with the given set of environmental factors: for occurrence of Vanda cristata there is no single environmental factor of special influence, while for Rhynehostylis retusa high bark pH and high light availability are important. First two axis of the PCA explained more than 50% of the total variance. Most orchid species occupy a specific, narrow niche in this ecological space. The main causes of anthropogenie influence of orchid population in the Kathmandu Valley are loss of adequate host trees (species and size) and increasing air pollution, resulting in increasing host bark pH.展开更多
Regolith thickness is considered as a contributing factor for the occurrence of landslides.Although, mostly it is ignored because of complex nature and as it requires more time and resources for investigation. This st...Regolith thickness is considered as a contributing factor for the occurrence of landslides.Although, mostly it is ignored because of complex nature and as it requires more time and resources for investigation. This study aimed to appraise the role of regolith thickness on landslide distribution in the Muzaffarabad and surrounding areas, NW Himalayas.For this purpose regolith thickness samples were evenly collected from all the lithological units at representative sites within different slope and elevation classes in the field. Topographic attributes(slope, aspect, drainage, Topographic Wetness Index,elevation and curvature) were derived from the Digital Elevation Model(DEM)(12.5 m resolution).Arc GIS Model Builder was used to develop the regolith thickness model. Stepwise regression technique was used to explore the spatial variation of regolith thickness using topographic attributes and lithological units. The derived model explains about 88% regolith thickness variation. The model was validated and shows good agreement(70%) between observed and predicted values. Subsequently, the derived regolith model was used to understand the relationship between regolith thickness and landslide distribution. The analysis shows that most of the landslides were located within 1-5 m regolith thickness. However, landslide concentration is highest within 5-10 m regolith thickness, which shows that regolith thickness played a significant role for the occurrence of landslide in the studied area.展开更多
Invasive plant species are exerting a serious threat to biological diversity in many regions of the world. To understand plant invasions this study aims to test which of the two plant invasiveness hypotheses; ‘low na...Invasive plant species are exerting a serious threat to biological diversity in many regions of the world. To understand plant invasions this study aims to test which of the two plant invasiveness hypotheses; ‘low native diversity' vs. ‘high native diversity', is supported by the regional distribution patterns of invasive plant species in the Himalayas,Nepal. This study is based on data retrieved from published literatures and herbarium specimens. The relationship between invasive plant species distribution patterns and that of native plant species is elucidated by scatter plots, as well as by generalized linear models. The native plant species and invasive plant species have similar distribution patterns and the maximum number of invasive plant species is found in the same altitudinal range where the highest richness for native tree species is found. There is a clear trend of higher invasive plant richness in regions where native tree species richness is relatively high.Consequently, the native plant richness is highest in the central phytogeographic region, followed by the eastern and the western regions, respectively. The invasive plant species also follows a similar trend.Additionally, the invasive plant species richness was positively correlated with anthropogenic factors such as human population density and the number of visiting tourists. This study supports the hypothesis that ‘high native diversity' supports or facilitates invasive plant species. Further, it indicates that nativeand invasive plant species may require similar natural conditions, but that the invasive plant species seem more dependent and influenced by anthropogenic disturbance factors.展开更多
The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering w...The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering width chronologies of Himalayan fir(Abies spectabilis)were developed,spanning 142–649 years along an elevation gradient of 3076–3900 m a.s.l.Principal component analysis classified the four chronologies into two groups;the ones at lower elevations(M1 and M2)and higher elevations(M3 and M4)show two distinct growth trends.Radial growth is limited by summer(June–August)precipitation at M3,and by precipitation during spring(March–May)and summer at M4.It is limited by spring temperatures and winter precipitation(December–February)at M1.Tree-ring width chronologies also significantly correlate with winter and spring Palmer Drought Severity Index(PDSI)at M1,and with summer PDSI at M3 and M4.Thus,Himalayan fir growth at high elevations is mainly limited by moisture stress rather than by low temperatures.Furthermore,the occurrence of missing rings coincides with dry periods,providing additional evidence for moisture limitation of Himalayan fir growth.展开更多
The present study was undertaken in five major forest types (dominated by Quercus semecarpifolia, Quercusfloribunda, Acer acuminatum, Abiespindrow and Aesculus indica, respectively) between 2400 and 2850 m a.s.1, in...The present study was undertaken in five major forest types (dominated by Quercus semecarpifolia, Quercusfloribunda, Acer acuminatum, Abiespindrow and Aesculus indica, respectively) between 2400 and 2850 m a.s.1, in a moist temperate forest of the Mandal-Chopta area in the Garhwal region of Uttarakhand, India. The aim was to assess the variation in composition and diversity in different vegetation layers, i.e., herb, shrub and tree, among these five forest types. Diversity indices, such as the Shannon-Wiener diversity index, density, total basal cover, Simpson's concentration of dominance index, Simpson's diversity index, Pielou's equitability, species richness, species heterogeneity and r-diversity, were calculated to understand community structures. Dominance-diversity curves were drawn to ascertain resource apportionment among various species in different forest types.展开更多
The study investigated the streamflow response to the shrinking cryosphere under changing climate in the Lidder valley, Upper Indus Basin(UIB), Kashmir Himalayas. We used a combination of multitemporal satellite data ...The study investigated the streamflow response to the shrinking cryosphere under changing climate in the Lidder valley, Upper Indus Basin(UIB), Kashmir Himalayas. We used a combination of multitemporal satellite data and topographic maps to evaluate the changes in area, length and volume of the glaciers from 1962 to 2013. A total of 37 glaciers from the Lidder valley, with an area of 39.76 km^2 in 1962 were selected for research in this study. It was observed that the glaciers in the valley have lost ~28.89 ±0.1% of the area and ~19.65 ±0.069% of the volume during the last 51 years, with variable interdecadal recession rates. Geomorphic and climatic influences on the shrinking glacier resources were studied. 30-years temperature records(1980-2010) in the study area showed a significant increasing trend in all the seasons. However, the total annual precipitation during the same period showed a nonsignificant decreasing trend except during the late summer months(July, August and September), when the increasing trend is significant. The depletion of glaciers has led to the significant depletion of the streamflows under the changing climate in the valley. Summer streamflows(1971-2012) have increased significantly till mid-nineties but decreased significantly thereafter, suggesting that the tipping point of streamflow peak, due to the enhanced glacier-melt contribution under increasing global temperatures, may have been already reached in the basin. The observed glacier recession and climate change patterns, if continued in future, would further deplete the streamflows with serious implications on water supplies for different uses in the region.展开更多
To understand the local atmosphere and heat transfer and to facilitate the boundary-layer parameterization of numerical simulation and prediction, an observational campaign was conducted in the Eastern Himalayas in Ju...To understand the local atmosphere and heat transfer and to facilitate the boundary-layer parameterization of numerical simulation and prediction, an observational campaign was conducted in the Eastern Himalayas in June 2010. The local atmospheric properties and near-surface turbulent heat transfers were analyzed. The local atmosphere in this region is warmer, more humid and less windy, with weaker solar ra- diation and surface radiate heating than in the Middle Himalayas. The near-surface turbulent heat transfer in the Eastern Himalayas is weaker than that in the Middle Himalayas. The total heat transfer is mainly contributed by the latent heat transfer with a Bowen ratio of 0.36, which is essentially different from that in the Middle Himalayas and the other Tibetan regions.展开更多
The detection of glacial lake change in the Himalayas, Nepal is extremely significant since the glacial lake change is one of the crucial indicators of global climate change in this area, where is the most sensitive a...The detection of glacial lake change in the Himalayas, Nepal is extremely significant since the glacial lake change is one of the crucial indicators of global climate change in this area, where is the most sensitive area of the global climate changes. In the Hima- layas, some of glacial lakes are covered by the dark mountains' shadow because of their location. Therefore, these lakes can not be de- tected by conventional method such as Normalized Difference Water Index (NDWI), because the reflectance feature of shadowed glacial lake is different comparing to the ones which are located in the open flat area. The shadow causes two major problems: 1) glacial lakes which are covered by shadow completely result in underestimation of the number of glacial lakes; 2) glacial lakes which are partly iden- tified are considered to undervalue the area of glacial lakes. The aim of this study is to develop a new model, named Detection of Shadowed Glacial Lakes (DSGL) model, to identify glacial lakes under the shadow environment by using Advanced Space-borne Ther- mal Emission and Reflection Radiometer (ASTER) data in the Himalayas, Nepal. The DSGL model is based on integration of two dif- ferent modifications of NDWI, namely NDWls model and NDWIshe model. NDWI~ is defined as integration of the NDWI and slope analysis and used for detecting non-shadowed lake in the mountain area. The NDWIshe is proposed as a new methodology to overcome the weakness of NDWI~ on identifying shadowed lakes in highly elevated mountainous area such as the Himalayas. The first step of the NDWIshe is to enhance the data from ASTER 1B using the histogram equalization (HE) method, and its outcome product is named AS- TERho. We used the ASTERhe for calculating the NDWIhc and the NDWIshe. Integrated with terrain analysis using Digital Elevation Model (DEM) data, the NDWIshe can be used to identify the shadowed glacial lakes in the Himalayas. NDWIs value of 0.41 is used to identify the glacier lake (NDWI~ 〉 0.41), and 0.3 of NDWIshe is used to identify the shadowed glacier lake (NDWIsho 〈 0.3). The DSGL model was proved to be able to classify the glacial lakes more accurately, while the NDWI model had tendency to underestimate the presence of actual glacial lakes. Correct classification rate regarding the products from NDWI model and DSGL model were 57% and 99%, respectively. The results of this paper demonstrated that the DSGL model is promising to detect glacial lakes in the shadowed en- vironment at high mountains.展开更多
The Subansiri,a major tributary of the Brahmaputra with its catchment area(35763 km^2)spreading almost entirely in the Eastern Himalayas across almost all the major and local tectonic features in the area witnesses la...The Subansiri,a major tributary of the Brahmaputra with its catchment area(35763 km^2)spreading almost entirely in the Eastern Himalayas across almost all the major and local tectonic features in the area witnesses large numbers of seismic events.Active tectonic indices like relief and slope,drainage pattern,longitudinal profile,valley profile,hypsometry,valley asymmetry factors and transverse topographic symmetry index,stream length gradient,valley floor-height ratio extracted from SRTM 3 arcsecond data prove that the evolving basin morphology has substantial contribution from the Himalayan tectonics.Seismic data are incorporated in the study to establish the potentially active tectonic elements in the catchment area.The study shows that the western part of the Subansiri River Basin is profoundly tilted towards north in the upper catchment and towards east in the lower and middle part of the catchment.The predominant tectonic movements in the western part of the basin caused the tilting of the basin towards north in the upstream and towards east in the middle and lower parts.展开更多
Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for th...Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for this study. Digital elevation models derived from ASTER GDEM and SRTM were also utilized. Visible, infrared and thermal infrared channels were utilized in order to get accurate glacier change maps. Three methods were tried to map this debris-covered glacier in this research. The glacier has been mapped successfully and the changes in the glacier terminus from 1978 to 2011 have been calculated. Manual, semi-automatic and thermal methods were found to give similar results. It was found that the glacier has undergone serious ablation during this period despite of the fact that many of the larger glaciers in the Hindu Kush and Karakoram mountain regions in the Upper Indus Basin were reported to be expanding. The terminus has been moved back about 600 meters during this period and there was an abrupt change in the glacier terminus during 1990-2002. We propose that debris thickness is not the only factor that influences the glacier ablation but the altitude of the debris-covered glacier as well. Many glaciers in the Karakoram region reported to be expanding were having higher altitudes compared to the study area.展开更多
Mt. Everest is often referred to as the earth's 'third' pole. As such it is relatively inaccessible and little is known about its meteorology. In 2005, an automatic weather station was operated at North Col (28...Mt. Everest is often referred to as the earth's 'third' pole. As such it is relatively inaccessible and little is known about its meteorology. In 2005, an automatic weather station was operated at North Col (28°1′ 0.95" N, 86°57′ 48.4" E, 6523 m a.s.l.) of Mt. Everest. Based on the observational data, this paper compares the reanalysis data from NCEP/NCAR (hereafter NCEP-Ⅰ) and NCEP-DOE AMIP-Ⅱ (NCEP- Ⅱ), in order to understand which reanalysis data are more suitable for the high Himalayas with Mr. Everest region. When comparing with those from the other levels, pressure interpolated from 500 hPa level is closer to the observation and can capture more synoptic-scale variability, which may be due to the very complex topography around Mt. Everest and the intricately complicated orographic land-atmosphereocean interactions. The interpolation from both NCEP-Ⅰ and NCEP-Ⅱ daily minimum temperature and daily mean pressure can capture most synopticscale variability (r〉0.82, n=83, p〈0.001). However, there is difference between NCEP-Ⅰ and NCEP-Ⅱ reanalysis data because of different model parameterization. Comparing with the observation, the magnitude of variability was underestimated by 34.1%, 28.5 % and 27.1% for NCEP-Ⅰ temperature and pressure, and NCEP-Ⅱ pressure, respectively, while overestimated by 44.5 % for NCEP-Ⅱ temperature. For weather events interpolated from the reanalyzed data, NCEP-Ⅰ and NCEP-Ⅱ show the same features that weather events interpolated from pressure appear at the same day as those from the observation, and some events occur one day ahead, while most weather events and NCEP-Ⅱ temperature interpolated from NCEP-Ⅰ happen one day ahead of those from the observation, which is much important for the study on meteorology and climate changes in the region, and is very valuable from the view of improving the safety of climbers who attempt to climb Mt. Everest.展开更多
文摘The extra-peninsular Gondwana Group rocks are exposed in narrow patches within the Lesser Himalayan sequence of the NE-Arunachal Himalayas,India.The bulk of sediments for the sandstones of the Gondwana Group were derived from felsic/acidic to intermediate igneous rocks,with minor mafic input from the upper continental crust(UCC),as supported by various discrimination diagrams based on quantification of detrital minerals coupled with sandstone geochemistry.The inputs from metamorphic sources in subordinate amounts cannot be ruled out,as indicated by quantification of the quartz varieties.These sediments were found to be sourced from the interior part of a craton or shield and recycled platformal sediments which were derived from both passive and active margin settings.The sediments experienced a wide variance in climatic conditions,from arid to humid,suffering low-moderate-inten-sity weathering(CIA:63.43;CIW:86.18;WIP:44.84;PIA:75.37;ICV:2.39;C-value:0.42;PF:0.49;Sr/Cu:9.23 and Rb/Sr:1.68)within the vicinity of the low plains to moderate hills.Additionally,redox-sensitive elements indicate the deposition of sediments under oxygenated or oxygen-rich conditions(U_(au):−2.91;Th/U:7.37;U/Th:0.18;V/Cr:1.71;δU:0.67 and Ce/Ce^(*):0.93).
基金financially supported by the National Natural Science Foundation of China(Nos.42401181,42025103)the Sichuan Tianfu Emei Plan
文摘The Himalayan-Tibetan Orogen holds numerous glaciers crucial for the Asian Water Tower,thus influencing the surface energy balance and climate feedback.Understanding glacier fluctuations is essential for improving our knowledge of current and future glacial evolution,but limited by short modern glacial observations.Proglacial lakes provide valuable opportunities to obtain high-resolution and continuous glacial changes,but detailed investigations remain scarce.For example,there is still controversy over whether lake sediments reflect melting or ablation.Therefore,we selected a modern glacial lake in the Himalayan region,formed due to glacial retreat in the 1960s,and compared its sedimentary records with modern observations.This provides a case study for future reconstruction of glacial changes using lake sediments.Our results indicate that the sediments of the proglacial lake are primarily influenced by glacial meltwater.Stronger meltwater fluxes transport more debris,magnetic minerals,and terrestrially derived organic matter to the lake.In terms of grain size distribution,the fine silt component(2–8μm)can serve as an indicator of glacial meltwater intensity.Additionally,this study reveals an opposite trend between glacial meltwater variations and air temperature trends over the past few decades.This suggests that evaporation may offset the increase in glacial meltwater,though the multi-century(>100-year)trend requires validation with longer records.
基金supported by the National Natural Science Foundation of China(grant number 31901109)Guangdong Basic and Applied Basic Research Foundation(grant number 2021A1515110744).
文摘Understanding how and why assemblage dissimilarity changes along spatial gradient is a great challenge in ecology,because answers to these questions depend on the analytical types,dimensions,and components of beta diversity we concerned.To obtain a comprehensive understanding of assemblage dissimilarity and its implications for biodiversity conservation in the Himalayas,we explored the elevational patterns and determinants of beta diversity and its turnover and nestedness components of pairwise and multiple types and taxonomic and phylogenetic dimensions simultaneously.Patterns of beta diversity and their components of different types and dimensions were calculated based on 96 sampling quadrats along an 1800-5400 m elevational gradient.We examined whether and how these patterns differed from random expectations using null models.Furthermore,we used random forest methods to quantify the role of environmental variables representing climate,topography,and human disturbance in determining these patterns.We found that beta diversity and its turnover component,regardless of its types and dimensions,shown a hump-shaped elevational patterns.Both pairwise and multiple phylogenetic beta diversity were remarkably lower than their taxonomic counterpart.These patterns were significantly less than random expectation and were mostly associated with climate variables.In summary,our results suggested that assemblage dissimilarity of seed plants was mostly originate from the replacement of closely related species determined by climate-driven environmental filtering.Accordingly,conservation efforts should better cover elevations with different climate types to maximalize biodiversity conservation,rather than only focus on elevations with highest species richness.Our study demonstrated that comparisons of beta diversity of different types,dimensions,and components could be conductive to consensus on the origin and mechanism of assemblage dissimilarity.
基金supported by the National Natural Science Foundation of China (40601056, 40121101)the Special Funds for Major State Basic Research Project (2009CB723901)+4 种基金the Special Science Foundation on Meteorological Project Research for Public Benefit (GYHY(QX)2007-6-18)the Survey Project on Glacier resources and their changes in China (No.2006FY110200)the Opening Fund projects of State Key Laboratory of Remote Sensing Science in the Institute of Remote Sensing Applicationsthe innovative project of Institute of Tibetan Plateau Research (ITPR),CASthrough a cooperation project between the Climate Change Institute, University of Maine supported by the National Oceanic and Atmospheric Administration (NA04OAR4600179) and the Institute of Tibetan Plateau Research (ITPR), CAS
文摘Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.
基金The External Cooperation Program of the Chinese Academy of Sciences,No.GJHZ0954National Basic Research Program of China,No.2005CB422006Institutional Consolidation for the Coordinated and Integrated Monitoring of Natural Resources towards Sustainable Development and Environmental Conservation in the Hindu Kush-Karakoram-Himalaya Mountain Complex
文摘Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006 we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 + 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91± 0.035 km2 and glacial lakes expanded by 36.88 + 0.035 kin2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700-6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.
基金This study was supported by the National Natural Science Foundation of China(grant 49254002) the former Ministry of Geology and Mineral Resources key projects"Deep Profile Test and Integrated Study of the Himalayas and Qinghai Tibet Plateau"(8506206)+1 种基金"Study of the Deep Structure beneath the Y arlung Zangbo Suture Zone of the Southern Qinghai-Tibet Plateau"(8506215)"Structure and Formation Mechanism of the Lithosphere beneath the Interior of the Tibetan Plateaul"(9501207).
文摘This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The upper crust, lower crust and mantle lithosphere beneath the blocks of the plateau form a 'sandwich' structure with a relatively rigid-brittle upper crust, a visco-plastic lower crust and a relatively rigid-ductile mantle lithosphere. This structure is completely different from that of monotonous, cold and more rigid oceanic plates. (2) In the process of north-directed collision-compression of the Indian subcontinent, the upper crust was attached to the foreland in the form of a gigantic foreland accretionary wedge. The interior of the accretionary wedge thickened in such tectonic manners as large-scale thrusting, backthrusting and folding, and magmatic masses and partially molten masses participated in the crustal thickening. Between the upper crust and lower crust lies a large detachment (e.g. the Main Himalayan Thrust in southern Tibet, 5-8 km thick) or a very thick shear-schistose zone (e.g. the Main Qiangtang Thrust-MQT in northern Tibet, up to 20 km thick), which causes the decoupling of the upper crust and lower crust and separation of tectonic activities. (3) During the collision-compression, the Indian mantle lithosphere was delaminated into two layers from where the crust thickened most rapidly (beneath the High Himalayas). The upper layer extends to 34.5°N and the lower layer to 33.5°. They have been underthrust to depths of 250-300 km into the asthenosphere. Meanwhile the Asian lithosphere (possibly the Qaidam terrane) has also been subducted southwards. Very thick mantle lithosphere does not exist beneath the plateau. (4) The oceanic lithosphere, in light of its lithology and dynamic behaviour, might be close to those of the continental lithosphere and its front might enter the asthenosphere before the continental lithosphere. (5) A 150-200 km deep low-velocity body below 35°N and a wide low-velocity zone below the area between 33.5° and 35°N dip north at very steep angles. Volcanism took place frequently in northern Tibet and anisotropy variations are prominent at depths, which might indicate a zone of large-scale eastward transfer of deep-seated materials.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,2019QZKK0501)National Natural Science Foundation of China(32000304)+4 种基金Yunnan Fundamental Research Projects(202101AT070294)National Key Research and Development Program of China(2017YFC0505200)Strategic Priority Research Program of Chinese Academy of Sciences(XDA20050202)Biodiversity Survey,Monitoring and Assessment(2019HB2096001006)Kadoorie Farm&Botanic Garden。
文摘The flying squirrels(Pteromyini,Rodentia)are the most diverse and widely distributed group of gliding mammals.Taxonomic boundaries and relationships within flying squirrels remain an area of active research in mammalogy.The discovery of new specimens of Pteromys(Hylopetes)leonardi Thomas,1921,previously considered a synonym of Hylopetes alboniger,in Yunnan Province,China allowed a morphological and genetic reassessment of the status of this taxon.Phylogenetic reconstruction was implemented using sequences of two mitochondrial(12S ribosomal RNA and 16S ribosomal RNA)and one nuclear(interphotoreceptor retinoid-binding protein)gene fragments.Morphological assessments involved examinations of features preserved on skins,skulls,and penises of museum specimens,supplemented with principal component analysis of craniometric data.Together these assessments revealed that this taxon should be recognized not only as a distinct species,but should also be placed within a new genus,described here as Priapomys gen.nov.
基金This work was financially supported by the China Geological Survey(Grant No.DD20160054)the National Natural Science Foundation of China(Grant No.U1407207)the National Key Research and Development Program of China(Grant No.2017YFC0602802).
文摘Tho Gudui geothermal field records the highest temperature at equivalent borehole depths among the lainland hydrothermal systems in China's Mainland.Located about 150 km southeast of Lhasa City,the capital of Tibet,the Gudui geothermal field belongs to the Sangri-Cuona rift belt,also known as the Sangri-Cuona geothermal belt,and is representative of the non-volcanic geothermal systems in the Himalayas.In this study,oxygen-18 and deuterium isotope compositions as well as 87Sr/86Sr ratios of water samples collected from the Gudui geothermal field were characterized to understand the origin and mixing processes of the geothermal fluids at Gudui.Hydrogen and oxygen isotope plots show both,deep and shallow reservoirs in the Gudui geothermal field.Deep geothermal fluids are the mixing product of magmatic and infiltrating snow-melt water.Calculations show that the magma fluid component of the deep geothermal fluids account for about 21.10%-24.04%;magma fluids lay also be a contributing source of lithium.The linear relationship of the 87Sr/86Sr isotopic ratio versus the 1/Sr plot indicates that shallow geothermal fluids form from the mixing of deep geothermal fluids with cold groundwater.Using a binary mixing model with deep geothermal fluid and cold groundwater as two end-members,the nixing ratios of the latter in most surface hot springs samples were calculated to be between 5% and 10%.Combined with basic geological characteristics,hydrogen and oxygen isotope characteristics,strontium concentration,87Sr/(86)Sr ratios,and the binary mixing model,we infer the 6 th-Class Reservoirs Evolution Conceptual Model(6-CRECM) for the Gudui geothermal system.This model represents an idealized summary of the characteristics of the Gudui geothermal field based on our comprehensive understanding of the origin and mixing processes of the geothermal fluid in Gudui.This study may aid in identifying the geothermal and geochemical origin of the Gudui high-temperature hydrothermal systems in remote Tibet of China,whose potential for geothermal development and utilization is enormous and untapped.
文摘The survival chance of epiphytie orchids today not only depends on the natural site conditions required by the orchids but also on anthropogenic changes in site conditions. This study answers two questions: (1) What is the ecological niche of the different epiphytic orchid species? (2) What are the ecological factors that threaten epiphytic orchid's population under anthropogenic disturbances? Our study area was the Kathmandu valley, Nepal, with its subtropical forest. We established 156 systematically selected sampling points in the Kathmandu area covering different types of ecosystems under human impacts such as densely populated area, agricultural land, mixed agricultural and settled area, old tree patches, and a natural forest in a national park. The ecological niche of the orchid species was analyzed with a principal component analysis (PCA). The correlations between the different site factors were statistically significant. Spearman's rank correlation matrices showed that the variables land-use intensities with altitude, and height with diameter in breast height (dbh) of host had the highest significant positive correlation coefficient (0.67 and 0.64 respectively). On the other hand, host bark pH and altitude as well as land use had a significantly strong negative correlation coefficient (-0.80 and -0.61, respectively). Different epiphytic orchid species interact differently with the given set of environmental factors: for occurrence of Vanda cristata there is no single environmental factor of special influence, while for Rhynehostylis retusa high bark pH and high light availability are important. First two axis of the PCA explained more than 50% of the total variance. Most orchid species occupy a specific, narrow niche in this ecological space. The main causes of anthropogenie influence of orchid population in the Kathmandu Valley are loss of adequate host trees (species and size) and increasing air pollution, resulting in increasing host bark pH.
文摘Regolith thickness is considered as a contributing factor for the occurrence of landslides.Although, mostly it is ignored because of complex nature and as it requires more time and resources for investigation. This study aimed to appraise the role of regolith thickness on landslide distribution in the Muzaffarabad and surrounding areas, NW Himalayas.For this purpose regolith thickness samples were evenly collected from all the lithological units at representative sites within different slope and elevation classes in the field. Topographic attributes(slope, aspect, drainage, Topographic Wetness Index,elevation and curvature) were derived from the Digital Elevation Model(DEM)(12.5 m resolution).Arc GIS Model Builder was used to develop the regolith thickness model. Stepwise regression technique was used to explore the spatial variation of regolith thickness using topographic attributes and lithological units. The derived model explains about 88% regolith thickness variation. The model was validated and shows good agreement(70%) between observed and predicted values. Subsequently, the derived regolith model was used to understand the relationship between regolith thickness and landslide distribution. The analysis shows that most of the landslides were located within 1-5 m regolith thickness. However, landslide concentration is highest within 5-10 m regolith thickness, which shows that regolith thickness played a significant role for the occurrence of landslide in the studied area.
基金part of the research project ‘Legal frameworks for Conservation of Biodiversity and Ecosystem Services in the Himalayas (HIMALINES)’ funded by the Norwegian Research Council (190153/V10) Olaf Grolles Legat
文摘Invasive plant species are exerting a serious threat to biological diversity in many regions of the world. To understand plant invasions this study aims to test which of the two plant invasiveness hypotheses; ‘low native diversity' vs. ‘high native diversity', is supported by the regional distribution patterns of invasive plant species in the Himalayas,Nepal. This study is based on data retrieved from published literatures and herbarium specimens. The relationship between invasive plant species distribution patterns and that of native plant species is elucidated by scatter plots, as well as by generalized linear models. The native plant species and invasive plant species have similar distribution patterns and the maximum number of invasive plant species is found in the same altitudinal range where the highest richness for native tree species is found. There is a clear trend of higher invasive plant richness in regions where native tree species richness is relatively high.Consequently, the native plant richness is highest in the central phytogeographic region, followed by the eastern and the western regions, respectively. The invasive plant species also follows a similar trend.Additionally, the invasive plant species richness was positively correlated with anthropogenic factors such as human population density and the number of visiting tourists. This study supports the hypothesis that ‘high native diversity' supports or facilitates invasive plant species. Further, it indicates that nativeand invasive plant species may require similar natural conditions, but that the invasive plant species seem more dependent and influenced by anthropogenic disturbance factors.
基金We thank the Kathmandu Center for Research and Education,CAS-TU,for help during the fieldwork。
文摘The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering width chronologies of Himalayan fir(Abies spectabilis)were developed,spanning 142–649 years along an elevation gradient of 3076–3900 m a.s.l.Principal component analysis classified the four chronologies into two groups;the ones at lower elevations(M1 and M2)and higher elevations(M3 and M4)show two distinct growth trends.Radial growth is limited by summer(June–August)precipitation at M3,and by precipitation during spring(March–May)and summer at M4.It is limited by spring temperatures and winter precipitation(December–February)at M1.Tree-ring width chronologies also significantly correlate with winter and spring Palmer Drought Severity Index(PDSI)at M1,and with summer PDSI at M3 and M4.Thus,Himalayan fir growth at high elevations is mainly limited by moisture stress rather than by low temperatures.Furthermore,the occurrence of missing rings coincides with dry periods,providing additional evidence for moisture limitation of Himalayan fir growth.
基金Department of Scienceand Technology, Government of India for providing financial support (Grant No. SP/SO/PS-52/2004)and the Uttarakh and Forest Department for providing meteorological data
文摘The present study was undertaken in five major forest types (dominated by Quercus semecarpifolia, Quercusfloribunda, Acer acuminatum, Abiespindrow and Aesculus indica, respectively) between 2400 and 2850 m a.s.1, in a moist temperate forest of the Mandal-Chopta area in the Garhwal region of Uttarakhand, India. The aim was to assess the variation in composition and diversity in different vegetation layers, i.e., herb, shrub and tree, among these five forest types. Diversity indices, such as the Shannon-Wiener diversity index, density, total basal cover, Simpson's concentration of dominance index, Simpson's diversity index, Pielou's equitability, species richness, species heterogeneity and r-diversity, were calculated to understand community structures. Dominance-diversity curves were drawn to ascertain resource apportionment among various species in different forest types.
基金part of the Department of Science and Technology(DST),Government of India sponsored national research project titled“Himalayan Cryosphere:Science and Society”
文摘The study investigated the streamflow response to the shrinking cryosphere under changing climate in the Lidder valley, Upper Indus Basin(UIB), Kashmir Himalayas. We used a combination of multitemporal satellite data and topographic maps to evaluate the changes in area, length and volume of the glaciers from 1962 to 2013. A total of 37 glaciers from the Lidder valley, with an area of 39.76 km^2 in 1962 were selected for research in this study. It was observed that the glaciers in the valley have lost ~28.89 ±0.1% of the area and ~19.65 ±0.069% of the volume during the last 51 years, with variable interdecadal recession rates. Geomorphic and climatic influences on the shrinking glacier resources were studied. 30-years temperature records(1980-2010) in the study area showed a significant increasing trend in all the seasons. However, the total annual precipitation during the same period showed a nonsignificant decreasing trend except during the late summer months(July, August and September), when the increasing trend is significant. The depletion of glaciers has led to the significant depletion of the streamflows under the changing climate in the valley. Summer streamflows(1971-2012) have increased significantly till mid-nineties but decreased significantly thereafter, suggesting that the tipping point of streamflow peak, due to the enhanced glacier-melt contribution under increasing global temperatures, may have been already reached in the basin. The observed glacier recession and climate change patterns, if continued in future, would further deplete the streamflows with serious implications on water supplies for different uses in the region.
基金financed by the Ministry of Science and Technology of the People's Republic of China (Grant No.2009CB421403)the Chinese Academy of Sciences (Grant No. KZCX3-YW-Q11-01the National Natural Science Foundation of China (GrantNo.40905067)
文摘To understand the local atmosphere and heat transfer and to facilitate the boundary-layer parameterization of numerical simulation and prediction, an observational campaign was conducted in the Eastern Himalayas in June 2010. The local atmospheric properties and near-surface turbulent heat transfers were analyzed. The local atmosphere in this region is warmer, more humid and less windy, with weaker solar ra- diation and surface radiate heating than in the Middle Himalayas. The near-surface turbulent heat transfer in the Eastern Himalayas is weaker than that in the Middle Himalayas. The total heat transfer is mainly contributed by the latent heat transfer with a Bowen ratio of 0.36, which is essentially different from that in the Middle Himalayas and the other Tibetan regions.
基金Under the auspices of Taikichiro Mori Memorial Research Grants of Keio University (No. 19, 2010)Doctoral Students Research Support Program of Keio University (No. 87, 2010)Academic Frontier Fund's 'Integrated Research for Community Strategic Concept by Construction and Management of Digital Asia' by Ministry of Education, Culture, Sports, Science and Technology (MEXT) (No. 04F003, 2004-2008)
文摘The detection of glacial lake change in the Himalayas, Nepal is extremely significant since the glacial lake change is one of the crucial indicators of global climate change in this area, where is the most sensitive area of the global climate changes. In the Hima- layas, some of glacial lakes are covered by the dark mountains' shadow because of their location. Therefore, these lakes can not be de- tected by conventional method such as Normalized Difference Water Index (NDWI), because the reflectance feature of shadowed glacial lake is different comparing to the ones which are located in the open flat area. The shadow causes two major problems: 1) glacial lakes which are covered by shadow completely result in underestimation of the number of glacial lakes; 2) glacial lakes which are partly iden- tified are considered to undervalue the area of glacial lakes. The aim of this study is to develop a new model, named Detection of Shadowed Glacial Lakes (DSGL) model, to identify glacial lakes under the shadow environment by using Advanced Space-borne Ther- mal Emission and Reflection Radiometer (ASTER) data in the Himalayas, Nepal. The DSGL model is based on integration of two dif- ferent modifications of NDWI, namely NDWls model and NDWIshe model. NDWI~ is defined as integration of the NDWI and slope analysis and used for detecting non-shadowed lake in the mountain area. The NDWIshe is proposed as a new methodology to overcome the weakness of NDWI~ on identifying shadowed lakes in highly elevated mountainous area such as the Himalayas. The first step of the NDWIshe is to enhance the data from ASTER 1B using the histogram equalization (HE) method, and its outcome product is named AS- TERho. We used the ASTERhe for calculating the NDWIhc and the NDWIshe. Integrated with terrain analysis using Digital Elevation Model (DEM) data, the NDWIshe can be used to identify the shadowed glacial lakes in the Himalayas. NDWIs value of 0.41 is used to identify the glacier lake (NDWI~ 〉 0.41), and 0.3 of NDWIshe is used to identify the shadowed glacier lake (NDWIsho 〈 0.3). The DSGL model was proved to be able to classify the glacial lakes more accurately, while the NDWI model had tendency to underestimate the presence of actual glacial lakes. Correct classification rate regarding the products from NDWI model and DSGL model were 57% and 99%, respectively. The results of this paper demonstrated that the DSGL model is promising to detect glacial lakes in the shadowed en- vironment at high mountains.
基金DST,Govt.of India for the FIST(20162021)project funding to the Department of Geological Sciences to develop the laboratories。
文摘The Subansiri,a major tributary of the Brahmaputra with its catchment area(35763 km^2)spreading almost entirely in the Eastern Himalayas across almost all the major and local tectonic features in the area witnesses large numbers of seismic events.Active tectonic indices like relief and slope,drainage pattern,longitudinal profile,valley profile,hypsometry,valley asymmetry factors and transverse topographic symmetry index,stream length gradient,valley floor-height ratio extracted from SRTM 3 arcsecond data prove that the evolving basin morphology has substantial contribution from the Himalayan tectonics.Seismic data are incorporated in the study to establish the potentially active tectonic elements in the catchment area.The study shows that the western part of the Subansiri River Basin is profoundly tilted towards north in the upper catchment and towards east in the lower and middle part of the catchment.The predominant tectonic movements in the western part of the basin caused the tilting of the basin towards north in the upstream and towards east in the middle and lower parts.
基金Rio Grande do Sul State Foundation for Research (FAPERGS), Brazil for financial support
文摘Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for this study. Digital elevation models derived from ASTER GDEM and SRTM were also utilized. Visible, infrared and thermal infrared channels were utilized in order to get accurate glacier change maps. Three methods were tried to map this debris-covered glacier in this research. The glacier has been mapped successfully and the changes in the glacier terminus from 1978 to 2011 have been calculated. Manual, semi-automatic and thermal methods were found to give similar results. It was found that the glacier has undergone serious ablation during this period despite of the fact that many of the larger glaciers in the Hindu Kush and Karakoram mountain regions in the Upper Indus Basin were reported to be expanding. The terminus has been moved back about 600 meters during this period and there was an abrupt change in the glacier terminus during 1990-2002. We propose that debris thickness is not the only factor that influences the glacier ablation but the altitude of the debris-covered glacier as well. Many glaciers in the Karakoram region reported to be expanding were having higher altitudes compared to the study area.
基金funded by the National Natural Science Foundation of China (Grant No. 40501015)the Chinese Academy of Science (Grant No. KZCX3-SW-344)
文摘Mt. Everest is often referred to as the earth's 'third' pole. As such it is relatively inaccessible and little is known about its meteorology. In 2005, an automatic weather station was operated at North Col (28°1′ 0.95" N, 86°57′ 48.4" E, 6523 m a.s.l.) of Mt. Everest. Based on the observational data, this paper compares the reanalysis data from NCEP/NCAR (hereafter NCEP-Ⅰ) and NCEP-DOE AMIP-Ⅱ (NCEP- Ⅱ), in order to understand which reanalysis data are more suitable for the high Himalayas with Mr. Everest region. When comparing with those from the other levels, pressure interpolated from 500 hPa level is closer to the observation and can capture more synoptic-scale variability, which may be due to the very complex topography around Mt. Everest and the intricately complicated orographic land-atmosphereocean interactions. The interpolation from both NCEP-Ⅰ and NCEP-Ⅱ daily minimum temperature and daily mean pressure can capture most synopticscale variability (r〉0.82, n=83, p〈0.001). However, there is difference between NCEP-Ⅰ and NCEP-Ⅱ reanalysis data because of different model parameterization. Comparing with the observation, the magnitude of variability was underestimated by 34.1%, 28.5 % and 27.1% for NCEP-Ⅰ temperature and pressure, and NCEP-Ⅱ pressure, respectively, while overestimated by 44.5 % for NCEP-Ⅱ temperature. For weather events interpolated from the reanalyzed data, NCEP-Ⅰ and NCEP-Ⅱ show the same features that weather events interpolated from pressure appear at the same day as those from the observation, and some events occur one day ahead, while most weather events and NCEP-Ⅱ temperature interpolated from NCEP-Ⅰ happen one day ahead of those from the observation, which is much important for the study on meteorology and climate changes in the region, and is very valuable from the view of improving the safety of climbers who attempt to climb Mt. Everest.