Harris hawks optimization(HHO)algorithm is an efficient method of solving function optimization problems.However,it is still confronted with some limitations in terms of low precision,low convergence speed and stagnat...Harris hawks optimization(HHO)algorithm is an efficient method of solving function optimization problems.However,it is still confronted with some limitations in terms of low precision,low convergence speed and stagnation to local optimum.To this end,an improved HHO(IHHO)algorithm based on good point set and nonlinear convergence formula is proposed.First,a good point set is used to initialize the positions of the population uniformly and randomly in the whole search area.Second,a nonlinear exponential convergence formula is designed to balance exploration stage and exploitation stage of IHHO algorithm,aiming to find all the areas containing the solutions more comprehensively and accurately.The proposed IHHO algorithm tests 17 functions and uses Wilcoxon test to verify the effectiveness.The results indicate that IHHO algorithm not only has faster convergence speed than other comparative algorithms,but also improves the accuracy of solution effectively and enhances its robustness under low dimensional and high dimensional conditions.展开更多
为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种...为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。展开更多
基金supported by the National Natural Science Foundation of China(61872126)。
文摘Harris hawks optimization(HHO)algorithm is an efficient method of solving function optimization problems.However,it is still confronted with some limitations in terms of low precision,low convergence speed and stagnation to local optimum.To this end,an improved HHO(IHHO)algorithm based on good point set and nonlinear convergence formula is proposed.First,a good point set is used to initialize the positions of the population uniformly and randomly in the whole search area.Second,a nonlinear exponential convergence formula is designed to balance exploration stage and exploitation stage of IHHO algorithm,aiming to find all the areas containing the solutions more comprehensively and accurately.The proposed IHHO algorithm tests 17 functions and uses Wilcoxon test to verify the effectiveness.The results indicate that IHHO algorithm not only has faster convergence speed than other comparative algorithms,but also improves the accuracy of solution effectively and enhances its robustness under low dimensional and high dimensional conditions.
文摘为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。